Kaitselüliti tööpõhimõte

  • Postitamine

Kodumajapidamises kasutatavate elektriskeemide kaitseks kasutatakse tavaliselt modulaarse disaini kaitselüliteid. Kompaktne, hõlpsasti paigaldamine ja asendamine vajaduse korral selgitab nende laialdast levikut.

Väliselt on see masin kuumakindla plastiga korpus. Esipinnal on sisse- ja väljapoole käepide, tagant on DIN-rööpaga kinnitusklamber ja ülemise ja alumise kangi klemmid. Selles artiklis me arvestame kaitselüliti tööpõhimõttega.

Kuidas töötab kaitselüliti?

Tavalises töörežiimis voolab masin läbi nimiväärtusest väiksem või võrdne. Välise võrgu toitepinge saadetakse fikseeritud kontaktiga ühendatud ülemisele klemmile. Fikseeritud kontakti korral siseneb vool liikuva kontakt, mis on sellega suletud, ja sellest läbi painduva vaskjuhtme solenoidmähisega. Pärast solenoidit juhitakse voolu termiline vabastus ja seejärel alumine terminal, millele on ühendatud koormusvõrk.

Avariirežiimis lülitab kaitselüliti kaitserüttena vabakäiguvahetusmehhanismi käivitamise tõttu välja ja aktiveerub soojus- või elektromagnetilisest vabastusest. Selle toimingu põhjuseks on ülekoormus või lühis.

Termiline vabastamine on bimetallist plaat, mis koosneb kahest kihist sulamitest, millel on erinevad soojuspaisumise koefitsiendid. Elektrivoolu läbilõikamisel soojendab plaat kuumust ja paindub kihi suunas, mille soojuspaisumistegur on madalam. Kui praegune väärtus on ületatud, jõuab plaadikangus väärtuseni, mis on piisav, et käivitada väljalülitusmehhanismi, ja ahel avaneb, kaitstud koormuse lõikamisel.

Elektromagnetiline vabastus koosneb liikuvast terasest südamikust, mis on kinnitatud vedru abil. Kui antud hetkeline väärtus on ületatud, on elektromagnetilise induktsiooniseaduse kohaselt elektromagnetilise välja indutseeritav mähis, mille toimel südamik tõmmatakse solenoidküünla sees, ületab vedrutakistuse ja käivitub väljalülitusmehhanismi. Tavalises töös on ka mähis indutseeritud magnetväli, kuid selle tugevus ei ole piisav, et ületada vedru vastupidavust ja tõmmata südamikusse.

Kuidas masin töötab ülekoormuse režiimis

Ülekoormusrežiim toimub siis, kui kaitselülitiga ühendatud vool ületab nimiväärtust, mille jaoks on kaitselüliti kavandatud. Sellisel juhul põhjustab soojusliku vabanemisega läbi viidud suurenenud voolamine bimetallplaadi temperatuuri tõusu ja sellest tulenevalt ka painde suurenemise kuni väljalülitusmehhanismi käivitumiseni. Masin lülitub välja ja avab ahela.

Sisekaitse toimimine ei toimu koheselt, kuna see võtab natuke aega bimetallplaadi soojendamiseks. See aeg võib varieeruda sõltuvalt nimivoolu ületamisest mõnest sekundist tunnini.

Selline viivitus võimaldab vältida elektrikatkestust juhuslike ja lühiajaliste voolutugevuste juures vooluahelal (näiteks kui on sisse lülitatud suured käivitusvoolu elektrimootorid).

Minimaalne vool, mille juures termiline vabastamine peaks toimima, seatakse tehases kasutatava reguleerimiskruvi abil. Tavaliselt on see väärtus 1,13-1,45 korda suurem kui masina sildil näidatud nimiväärtus.

Vooluhulka, mille juures soojuskaitse töötab, mõjutab ka ümbritsev temperatuur. Kuumal ruumis soojendab ja nihutatakse bimetallist plaat, kuni see käivitub madalamal voolul. Madala temperatuuriga ruumides võib termiline voolutugevus olla suurem lubatud väärtusest.

Võrgu ülekoormuse põhjuseks on tarbijate ühendamine sellega, mille koguvõimsus ületab kaitstud võrgu nimivõimsust. Erinevate võimsate kodumasinate (õhu konditsioneerimine, elektripliit, pesumasin ja nõudepesumasin, triikraud, elektriline veekeetja jne) samaaegne kaasamine võib viia soojuse vabanemiseni.

Sellisel juhul otsustage, millist tarbijat saab keelata. Ja ärge kiirustades uuesti masinat sisse lülitama. Te ei saa seda ikkagi tööasendisse tagasi viia, kuni see jahutab, ja vabastuse bimetallplaat ei jõua tagasi oma algsesse olekusse. Nüüd sa tead, kuidas ülekoormuslüliti töötab.

Kuidas masin töötab lühise režiimis

Lühisekaitse korral on kaitselüliti tööpõhimõte erinev. Lühemate voolude korral suureneb vooluring dramaatiliselt ja korduvalt väärtustele, mis võivad juhtmestikku sulandada, või juhtmete isolatsiooni. Selliste sündmuste arengu vältimiseks tuleb kett kohe katkestada. Elektromagnetiline vabastus on just see, mis toimib.

Elektromagnetiline vabastus on solenoidmähis, mille sees on terasest südamik, mis on vedru all fikseeritud asendis.

Elektromagnetilise mähise voolu mitmekordne suurendamine, mis tekib lühise ajal vooluahelal, põhjustab magnetvoo proportsionaalset suurenemist, mille alla südamik tõmmatakse solenoidkolvi, ületab vedrutakistuse ja surub vabastusriba. Masina toitekontaktid on lahti, katkestades ahela avariipaigutuse toide.

Seega kaitseb elektromagnetilise väljalülitusseadme kasutamine elektrilist juhtmestikku, mis suleti elektriseadme ja masina end tule ja hävitamise eesmärgil. Selle reaktsiooniaeg on umbes 0,02 sekundit ja juhtmestikul ei ole aega soojeneda ohtlikele temperatuuridele.

Kui automaatvõrgu kontaktid avanevad, kui nende kaudu läbib suur vool, tekib nende vahel elektrikarak, mille temperatuur võib ulatuda kuni 3000 kraadi.

Selleks, et kaitsta kontakte ja masina teisi osi selle kaare hävitavast mõjust, on masina kujundamisel ette nähtud kaarekustutuskamber. Kaarekamber on metallplaatide komplekt, mis on üksteisest eraldatud.

Kaar tekib kontakti avamispunktis ja seejärel liigub üks selle otsad liikuvast kontaktist ja teine ​​libistab kõigepealt mööda fikseeritud kontakti ja seejärel piki sellega ühendatud juhi, mis viib arukamiskambri tagaseinani.

Seal jagatakse (purustatakse) kaarekambri plaatide vahel, nõrgestab ja kustub. Masina alumises osas on kaarel tekkinud gaaside eemaldamiseks spetsiaalsed avad.

Kui masin lülitub välja, kui elektromagnetilise väljalaske väljalaskmine toimub, ei saa te elektrikaid enne, kui leiad ja kõrvaldate lühise põhjuse. Tõenäoliselt põhjustab see mõne tarbija ebaõnnestumist.

Lülitage kõik tarbijad välja ja proovige masinat sisse lülitada. Kui teil see õnnestub ja masin seda ei tee, tähendab see seda, et see on tõesti - üks süüdistustest on sinu ja sul on veel üks sellest teada saada. Kui masin ja lahutatud tarbijad jälle lööb välja, siis on kõik palju keerukamad ja me tegeleme isolatsioonijuhtmete riketega. Peame otsima, kus see juhtus.

See on kaitselüliti tööpõhimõte eri eriolukordades.

Kui kaitselüliti välja lülitamine on teie jaoks püsivaks probleemiks, ärge proovige seda lahendada, paigaldades kõrge nimivooluga kaitselüliti.

Automaadid on installitud, võttes arvesse teie juhtmestiku ristlõike, mistõttu teie võrgust rohkem voolavus pole lihtsalt lubatud. Probleemi lahendamine on võimalik ainult pärast täielikku ülevaadet oma kodu toiteallikast spetsialistide poolt.

Circuit Breaker Kategooriad: A, B, C ja D

Kaitselülitid on seadmed, mis vastutavad elektrivoolu kaitsmise eest suure vooluga kokkupuutest põhjustatud kahjustuste eest. Elektronide liiga tugev vool võib kahjustada kodumasinaid, samuti põhjustada kaabli ülekuumenemist järgneva tagasivoolu ja süttimisega. Kui liin ei ole aja jooksul pingestatud, võib see põhjustada tulekahju. Seepärast on elektripaigaldiseeskirjade (elektripaigaldustingimuste reeglid) nõuete kohaselt keelatud võrgu kasutamine, milles elektrikaitselülitid pole paigaldatud. AB-l on mitu parameetrit, millest üks on automaatse kaitselüliti ajavool. Selles artiklis selgitame A, B, C ja D kategooria kaitselülitite erinevust, mille kaitsmiseks kasutame neid võrke.

Võrgu kaitseseadmete tunnused

Ükskõik mis klassi kaitselüliti kuulub, on selle põhiülesanne alati sama - kiiresti tuvastada ülemäärase voolu välimus ja võrgu välja lülitada, enne kui kaabel ja liiniga ühendatud seadmed on kahjustatud.

Vooluhulgad, mis võivad võrgustikku olla ohtlikud, on jagatud kahte tüüpi:

  • Ülekoormuse voolud Nende välimus esineb enamasti tänu seadmete võrgu lisamisele, mille koguvõimsus ületab selle võimsuse, mille joon suudab taluda. Veel üks ülekoormuse põhjus on ühe või mitme seadme rike.
  • Lühisega põhjustatud ülekoormus. Lüli tekib, kui faas ja neutraaljuhid on omavahel ühendatud. Tavalises olekus on need koormus eraldi ühendatud.

Vooluahela seade ja tööpõhimõte - videos:

Ülekoormus

Nende suurus kõige sagedamini ületab automaatselt nominaalset väärtust, nii et sellise elektrivoolu läbimine mööda ringlussüsteemi, kui see ei kao liiga kaua, ei kahjusta liini. Sellega seoses ei ole antud juhul vajalik hetkeline pingestuse väljalülitamine, seepärast jõuab sageli sageli automaatselt elektrivool. Iga AB on kavandatud teatud elektrivoolu ületamiseks, milles see käivitub.

Kaitselüliti reageerimisaeg sõltub ülekoormuse suurusest: mõne normaali ületavusega võib kuluda tund või rohkem ja märkimisväärse ühe sekundi jooksul.

Võimsa koormuse mõjul vooluvuse katkestamiseks vastab soojuspaisumine, mis põhineb bimetallplaadil.

Seda elementi kuumutatakse võimsa voolu mõjul, see muutub plastiks, paindub ja põhjustab automaatse käivitumise.

Lühis voolud

Lühisülekandest põhjustatud elektronide voog ületab oluliselt kaitsevahendi väärtust, nii et viimane kohe käivitub, lülitades voolu välja. Lühise ja viivitamatu reaktsiooni tuvastamiseks vastutab elektromagnetiline vabastamine, mis on südamikuga solenoid. Viimane ülekoormus mõjutab koheselt lülitit, põhjustades selle liikumist. See protsess võtab paar sekundit.

Siiski on üks nüanss. Mõnikord võib ülekoormuse vool olla väga suur, kuid seda ei põhjusta lühis. Kuidas peaks aparatuur määrama nendevahelise erinevuse?

Video automaatlülitite valikulisusest:

Siinkohal jätkame sujuvalt põhiküsimusega, millele meie materjal on pühendatud. Nagu öeldud, on olemas mitmed AB klassid, mis erinevad ajahetkel iseloomuliku iseloomuga. Kõige tavalisemad neist, mida kasutatakse majapidamises elektrivõrkudes, on klasside B, C ja D seadmed. A-kategooria kaitselülitid on palju vähem levinud. Need on kõige tundlikumad ja neid kasutatakse täppisinstrumentide kaitsmiseks.

Nende seas erinevad praegused hetkeseadised. Selle väärtuse määrab voolu läbilaskevõime korduvus automaadi nimiväärtusele.

Kaitselülitite väljalülitusomadused

Selle parameetriga määratud AB-klass on tähistatud ladina tähega ja kinnitatakse seadme kehasse nimivoolule vastava numbri ees.

Vastavalt EMP kehtestatud klassifikatsioonile on kaitseautomaadid jagatud mitmesse kategooriasse.

MA tüüpi masinad

Selliste seadmete eripära on nendes termilise vabanemise puudumine. Selle klassi seadmed on paigaldatud elektrimootorite ja muude võimsate seadmete ühendussõlmesse.

Ülekoormuskaitse niisugustes liinides pakub ülekoormuslülitust, kaitseb kaitselüliti ainult ülekoormuslülitustest põhjustatud kahjustusi.

A-klassi seadmed

Nagu öeldud, on A-tüüpi masinatel kõige suurem tundlikkus. Ajavoolu karakteristikutega seadmete soojuslik vabastamine aeglustab sagedamini jõudlusega AB-d 30% võrra.

Elektromagnetiline väljalülituspähkel lülitab võrgu välja umbes 0,05 sekundi võrra, kui vooluahela elektrivool ületab nimiväärtust 100% võrra. Kui mingil põhjusel pärast elektrivoolu võimsuse kahekordistamist koefitsiendiga kaks ei saanud elektromagnetiline solenoid töötada, siis vabaneb bimetallieraldus võimsusest 20-30 sekundit.

Liinide hulka kuuluvad ajaga hoiustamise tunnus A masinad, mille käigus isegi lühiajalised ülekoormused on vastuvõetamatud. Nende hulka kuuluvad ahelad, milles on pooljuhtide elemendid.

B-klassi ohutusseadmed

B-kategooria seadmetest on vähem tundlik kui A-tüüpi. Elektromagnetiline vabastus neis käivitub, kui nimivool on 200% kõrgem ja vastamisaeg on 0,015 sekundit. Bimetallplaadi töötamine rikkis koos iseloomuga B-ga sarnase AB-i nominaalväärtusega ületab 4-5 sekundit.

Selle seadme seadmed on ette nähtud paigaldamiseks liinidele, mis sisaldavad pistikupesasid, valgustusseadmeid ja muid ahelasid, kus elektrivoolu alustades ei ole või on minimaalne väärtus.

C-kategooria masinad

Kodu võrkudes on kõige sagedasemad C-tüüpi seadmed. Nende ülekoormus on isegi kõrgem kui eelnevalt kirjeldatud. Selleks, et paigaldada elektromagnetiline väljalülitus solenoid, peab selline seade olema paigaldatud nii, et selle läbivate elektronide voog ületab nimiväärtust 5 korda. Termokaitsesüsteem katkestab 1,5 sekundi jooksul kaitseseadme väärtuse viiekordse ületava väärtuse.

Nagu juba öeldud, on ajami kaitselülitite paigaldamine aega iseloomulik C tavaliselt leibkonna võrkudes. Nad teevad suurepärast tööd sisendseadmete rolli üleüldise võrgu kaitsmiseks, samas kui B-kategooria seadmed sobivad hästi üksikutele harudele, mille külge on ühendatud väljalaske- ja valgustusseadmed.

See võimaldab jälgida kaitsemehhanismide selektiivsust (selektiivsus), ja ühe ahela lühise puudumine ei põhjusta kogu maja energiat.

Circuit Breakers D-kategooria

Neil seadmetel on suurim ülekoormus. Selles seadmes paigaldatud elektromagnetilise mähise käitamiseks on vaja kaitsta kaitselüliti elektrivoolu ületada vähemalt 10 korda.

Sellisel juhul vabaneb termiline vabastamine 0,4 sek.

D-tunnusega seadmeid kasutatakse sageli üldistes hoonete ja rajatiste võrgustikes, kus neil on turvavõrgu roll. Need käivituvad, kui lülituslülitid ei ole eraldi ruumis õigeaegselt katkestatud. Samuti on need paigaldatud vooluringidesse, kus on palju lähtevooge, mille külge näiteks elektrimootorid on ühendatud.

Kategooria K ja Z ohutusseadmed

Selliste tüüpide automaadid on palju vähem levinud kui eespool kirjeldatud. K-tüüpi seadmetel on elektromagnetilise väljalülitamise jaoks vajalike praeguste väärtuste suur erinevus. Vahelduvvooluahela korral peab see indikaator ületama nominaalsüsteemi 12 korda ja konstantseks - 18 võrra. Elektromagnetilise solenoidi töö ei toimu rohkem kui 0,02 sekundit. Sellises seadmes võib termilise vabanemise toimida siis, kui nimivool ületab ainult 5%.

Need funktsioonid on tingitud K-tüüpi seadmete kasutamisest äärmiselt induktiivsete koormustega ahelates.

Z-tüüpi seadmetel on ka elektromagnetilise väljalülitamise solenoidi erinevad väljalülitusvoolud, kuid levimine ei ole sama suur kui AV-kategooria K. Vooluahela vooluringil tuleb nende lahtiühendamiseks pidurdada kolmekordselt ja DC-võrkudes peab elektrivool olema 4,5 korda nominaalset.

Z-iseloomulikke seadmeid kasutatakse ainult liinidel, kuhu on ühendatud elektroonilised seadmed.

Ilmselgelt video kategooriate masinate kohta:

Järeldus

Käesolevas artiklis analüüsisime kaitseautomaatide ajapõhiseid omadusi, nende seadmete liigitamist vastavalt EMP-le, samuti arutasime, millised ahelad on paigaldatud eri kategooriate seadmetesse. Saadud teave aitab teil määrata, milliseid kaitseseadmeid tuleks võrgul kasutada, lähtudes sellest, millistesse seadmetesse see on ühendatud.

Kaitselülitid - konstruktsioon ja tööpõhimõte

See artikkel jätkab elektrikaitseseadmete - voolukatkestite, RCD-de, difavtomatam-väljaannete seeriat, milles me üksikasjalikult uurime nende töö eesmärki, ülesehitust ja põhimõtteid ning kaalume ka nende põhiomadusi ning analüüsime üksikasjalikult elektriliste kaitseseadiste arvutamist ja valimist. See artiklite tsükkel viiakse lõpule järkjärgulise algoritmiga, milles automaatkaitselülitite ja RCDde arvutamiseks ja valimiseks koostatakse täielik algoritm lühiajaliselt, skemaatiliselt ja loogilises järjestuses.

Selleks, et te ei laseks selle teema uute materjalide väljaandmist, tellige uudiskiri, käesoleva artikli allservas olev liitumisvorm.

Noh, selles artiklis me mõistame, mis on kaitselüliti, mis see on, kuidas see on korraldatud ja kuidas see toimib.

Vooluahela kaitselüliti (või tavaliselt lihtsalt "vooluahela kaitselüliti") on kontaktlülitusseade, mis on kavandatud sisse lülitama (välja lülitama) vooluahela, kaitsma kaableid, juhtmeid ja tarbijaid (elektriseadmed) ülekoormuse voolu ja lühisevoolu eest. sulgemine

Ie Kaitselülitil on kolm põhifunktsiooni:

1) vooluahela lülitamine (võimaldab lülitada sisse ja välja lülitada teatud vooluahela osa);

2) kaitseb ülekoormuse voolu eest kaitstud ahelaga, kui see voolab voolu sisse, mis ületab lubatud väärtust (näiteks siis, kui liinile on ühendatud võimsad instrumendid või seadmed);

3) katkestab kaitstud vooluahela elektrivõrgust, kui seal on suured lühisevoolud.

Seega toimivad automaadid samal ajal kaitsefunktsioone ja juhtimisfunktsioone.

Disaini järgi valmistatakse kolme peamist kaitseliinit:

- õhu kaitselülitid (kasutatakse tööstuses tuuleenergia suure võimsusega vooluahelates);

- vormitud korpuse kaitselülitid (kavandatud laias valikus töötavate voolude jaoks 16 kuni 1000 amprit);

- modulaarsed voolukatkestid, mis on meile kõige tuntumad, milleks me oleme harjunud. Neid kasutatakse laialdaselt igapäevaelus, kodudes ja korterites.

Neid nimetatakse modulaarseks, kuna nende laius on standardiseeritud ja sõltuvalt postide arvust on mitu korda 17,5 mm, seda teemat käsitletakse üksikasjalikumalt eraldi artiklis.

Meie, saidi http://elektrik-sam.info lehtedel leiame me modulaarseid kaitselüliteid ja turvaseadmeid.

Kaitselüliti tööpõhimõte ja -seadis.

Arvestades RCD disaini, ütlesin, et kliendi uuringul on ka automaatsed lülitid, mille kujundamist me nüüd kaalume.

Kaitselüliti juht on tehtud dielektrilisest materjalist. Esiküljel on tootja kaubamärk (bränd), katalooginumber. Peamised omadused on nominaalsed (meie puhul nimivool 16 Amprit) ja ajavool omadus (meie proovi C jaoks).

Samuti on eesmise pinna tähistatud ja muud kaitselüliti parameetrid, mida käsitletakse eraldi artiklis.

Tagaküljel on spetsiaalne kinnitus, mis paigaldatakse DIN-rööpale ja paigaldatakse sellele spetsiaalse riiviga.

DIN-rööpmehhanism on spetsiaalselt modulaarsete seadmete (automaadid, RCDd, mitmesugused releed, starterid, klemmliistud jms) monteerimiseks mõeldud spetsiaalsed metallist rööpad 35 mm laiusega, elektrienergia arvestid on toodetud spetsiaalselt DIN-rööpade paigaldamiseks. Rööbasse paigaldamiseks tuleb masina kere asetada DIN-rööpaga ja suruda masina põhja nii, et riiv lukustub. DIN-rööbast eemaldamiseks peate riivi vabastamiseks alt üles ja eemaldama automaadi.

On moodulseadmedhot tihedalt klõpsatusega, sel juhul, kui paigaldatud DIN-liistule on vaja konks põhja riivi lukk, automaat algust rööpa ja seejärel riivi vabastamiseks või lisandmooduli tema sunniviisiliselt lükates kruvikeeraja.

Kaitselüliti juhtum koosneb kahest poolest, mis on ühendatud nelja nööriga. Keha lahtihaakimiseks on vaja noad läbi välja võtta ja eemaldada üks keha pool.

Selle tulemusena jõuame sisse kaitselüliti sisemisse mehhanismi.

Seega on kaitselüliti konstruktsioonis:

1 - ülemine kruvipea;

2 - alumine kruvikomponent;

3 - fikseeritud kontakt;

4 - liikuv kontakt;

5 - painduv juht;

6 - elektromagnetilise vabastamise mähis;

7 - elektromagnetilise vabanemise tuum;

8 - vabastusmehhanism;

9 - juhtkäepide;

10 - painduv juht;

11 - termilise vabastamise bimetallplaat;

12 - termilise vabastamise reguleerimiskruvi;

13 - kaarekamber;

14 - gaaside eemaldamise ava;

15 - kinnitusklamber.

Juhtpuldi ülespoole tõstes on kaitselüliti ühendatud kaitselülitiga, langetades nuppu allapoole - nad lülituvad sellest lahti.

Termiline vabastamine on bimetallist plaat, mida kuumutatakse läbivoolu läbiva vooluga ja kui vool ületab eelnevalt määratud väärtuse, siis paindub plaat ja käivitub vabastusmehhanism, seega eemaldades kaitselülituse kaitselülitit.

Elektromagnetiline vabastus on solenoid, st spiraal koos haavakattega ja südamiku sees vedru abil. Kui lühis toimub voolul tõuseb kiiresti rullikerimisele elektromagnetilise vabanemisega indutseeritud magnetvoo mõjul indutseeritud magnetvoo liigub tuum ning ületades vedru mõjub mehhanismi ja keelab automaat.

Kuidas töötab kaitselüliti?

Automaatse lüliti tavapärases (mitte-hädaolukorras) režiimis, kui juhtkang on sisse lülitatud, suunatakse elektriline vool automaatsesse masina ülemise terminali kaudu ühendatud toitejuhtmesse, siis vool läheb fikseeritud kontakti, läbi selle ühendatud sellega liikuva kontaktiga, seejärel läbi painduva juhtme solenoid-pooli, pärast spiraali mööda painduvat juhikut termilise vabastamise bimetallplaadile, sellest kuni alumise kruviklemmi ja seejärel ühendatud koormuskontuuri külge.

Joonisel on näidatud masin seisundis: juhtkang on üles tõstetud, liikuvad ja statsionaarsed on ühendatud.

Ülekoormus tekib siis, kui vooluahela vooluahela juhtimisseadise vooluhulk hakkab ületama kaitselüliti nimivoolu. Termilise väljalaskega bimetallplaat hakkab kuumutama selle kaudu läbivat suurenenud elektrivoolu, kõverdub ja kui vooluahel ei vähene, töötab plaat vabastusmehhanismile ja kaitselüliti lülitub välja, kaitstud ahelaga avades.

Bimetallplaadi kuumutamiseks ja painutamiseks kulub natuke aega. Reaktsiooniaeg sõltub plaadil läbitavast vooluhulgast, seda suurem on vool, seda lühem on vastamisaeg ja see võib olla mitu sekundit tunnini. Soojuskandja minimaalne voolutugevus on 1,13-1,45 masina nimivoolust (st termiline vooluhulk hakkab tööle, kui nimivool ületab 13-45%).

A-lüliti on analoogseade, see seletab seda parameetrite erinevust. Selle peenhäälestamisel on tehnilisi raskusi. Termoreaktsiooni väljalülitusvool on seatud tehases reguleerimiskruviga 12. Pärast seda, kui bimetallplaat on jahtunud, on kaitselüliti valmis edasiseks kasutamiseks.

Bimetallplaadi temperatuur sõltub ümbritseva õhu temperatuurist: kui kaitselüliti on paigaldatud ruumi suure õhutemperatuuriga, võib termiline vabastamine töötada madalama vooluga madalatel temperatuuridel, siis võib soojusliku vallandamise reaktsioonivool olla suurem kui lubatav. Täpsema teabe saamiseks vaadake seda artiklit. Miks lülitatakse kaitselüliti soojuskiirguses?

Termiline vabastamine ei toimi kohe, kuid mõne aja pärast võimaldab ülekoormusvool normaalse väärtuse taastamist. Kui selle aja vältel ei vähene vooluhulk, vabaneb termiline vool välja, kaitstes tarbijaahelat ülekuumenemise, isolatsiooni sulamise ja juhtmestiku võimaliku süttimise eest.

Ülekoormus võib olla tingitud ühendatud suure võimsusega seadmetest, mis ületavad kaitstud ahela nimivõimsust. Näiteks kui liinile on ühendatud väga võimas kütteseade või elektripliit koos ahjuga (mille võimsus ületab nimivõimsust) või samaaegselt mitu võimsat tarbijat (elektripliit, konditsioneer, pesumasin, boiler, elektriline veekeetja jne) või suur hulk kaasa arvatud seadmed.

Kui voolulühisele circuit kasvab momentaanselt indutseeritud poolis seadusega elektromagnetilise induktsiooni magnetvälja liigub solenoid südamikku, mis käitab reisi mehhanismi ja avab võimsuslüliti peamised kontaktid (st liigutatava ja paiksete kontaktid). Avaneb joon, mis võimaldab teil eemaldada toide avariijuhistest ja kaitsta masinat, elektrijuhtmeid ja suletud elektriseadet tule ja hävitamise eest.

Elektromagnetilise vabanemise käivitub peaaegu kohe (umbes 0,02 s), erinevalt termilisest, kuid palju suurematest voolutugevustest (alates 3 või enamast nimivoolu väärtustest), nii et juhtmestikul ei ole aega soojeneda isolatsiooni sulamistemperatuurini.

Kui vooluahel kontakteerub lahti, kui elektrivool läbi selle läbib, tekib elektriline kaar ja mida vool on ahelas, seda tugevam on kaar. Elektriline kaar põhjustab kontaktide erosiooni ja hävitamist. Kaitselüliti kontaktide kaitsmiseks selle hävitavast toimest suunatakse kontakti avamise hetkel tekkinud kaar kaarekambrisse (mis koosneb paralleelsetest plaatidest), kus see purustatakse, nõrgestatakse, jahutatakse ja kaob. Kui kaar põleb, moodustuvad gaasid, väljutatakse masina kehast väljastpoolt spetsiaalse ava kaudu.

Masinat ei soovitata tavapärase kaitselüliti kasutamisel, eriti kui see on lahti ühendatud, kui on ühendatud võimsad koormused (st suurel voolul ahelas), kuna see kiirendab kontaktide hävimist ja erosiooni.

Nii et let's kokku:

- vooluahela lüliti võimaldab vooluahelat lülitada (juhtimiskangi liigutamisega ülespoole - automaat ühendatakse ahelaga, hoides allapoole hoides - automaat katkestab toitejuhtme koormuskontuuri);

- sellel on sisseehitatud termiline vabastus, mis kaitseb koormustoru ülekoormuse voolu eest, on inertsiaalne ja töötab mõne aja pärast;

- omab sisseehitatud elektromagnetilisi väljalaskeavasid, mis kaitseb koormustoru suurel lühisevoolul ja töötab peaaegu kohe;

- sisaldab kaar-supresseerivat kambrit, mis kaitseb võimukontakte elektromagnetilise kaare hävitavast toimest.

Oleme loobunud disaini, eesmärgi ja töö põhimõttest.

Järgmises artiklis käsitleme kaitselülitite põhiomadusi, mida peate selle valimisel teadma.

Vaata videokaamera kaitselüliti konstruktsiooni ja põhimõtteid:

Kaitselüliti termiline kaitse

Avaleht »Elektriseadmed» Ohutus »Automaatne» Kaitselüliti töökäsk - tööpõhimõte erinevates olukordades

Automaatse lüliti toimimise tunnus - tööpõhimõte erinevates olukordades

Korteri või maja juhtmestikus on tingimata elementi, mida nimetatakse automaatseks lülitiks või sagedamini automaatseks lülitiks.

Selline seade on loodud elektrivõrgu automaatseks kaitsmiseks ülekoormuse või lühise eest tekkivatest muredest. Lisaks saab seda kasutada elektriahela käsitsi sisselülitamiseks ja väljalülitamiseks.

Automaatlüliti sisemise seadme tunnusjooned

Masinatel on palju erinevaid konstruktsioone, mis on kavandatud nii üksikute korterite või majade elektrivõrkude kui ka tööstusettevõtete või kauplemisruumide kaitseks.

Kaitselülitid määratakse nimivoolu ja rühma järgi. Sõltuvalt nendest omadustest on kaitselülitid jaotatud kolmeks rühmaks - B, C ja D. Elektrivõrkude puhul kasutatakse tavaliselt C-tüüpi seadmeid, milles hetkeline väljalülitusvool jääb vahemikku 5-10 nimivoolu väärtust. Järgmisena loetakse automaat tüüpi C modulaarseks tüübiks.

Kaitselüliti kaitselüliti on lisatud järgmisi plokke:

  • eluase;
  • kontrollimehhanism;
  • kommutatsiooniseade;
  • reisiüksused;
  • kaar kustutamise kaamera.

Seadme kott on plastikust kast, mille mõõtmed on standarditud. Esiküljel on masina sisse- ja väljalülitamise hoob, DIN-riba kinnitamiseks on tagaküljel olev riiv, ülemises ja alumisosas on juhtmete ühendamiseks klemmid.

Üks elektrimasina eripära on juhtmehhanism, mis on mõeldud käsitsi sisse- ja väljalülitamiseks. See koosneb käepidemest või nuppudest.

Kommutatsiooniseade on elektri- ja abikontaktide kogum. Need kontaktid võivad olla mobiilsed või fikseeritud.

Lülitusseadmed on elektriskeemi avamiseks mõeldud seadmed, kui voolukiirus ületab ettenähtud väärtusi. Seadmes on elektromagnetilised ja termilised releed. Elektromagnetiline on metallist südamikuga induktiivsus, mis on ühendatud automaatvõlli liikuva võimsusega kontaktiga. Soojuses kasutatakse bimetallist plaati, mis läbib selle kaudu voolava voolu toimet, mis käib automaatselt liikuvas kontaktis kõverdub ja läbi kangide.

Kaarluse mõju nõrgenemine, mis tekib siis, kui toitekontaktid on avatud, on masinasse paigaldatud spetsiaalne metallist plaatidega kamber. Sellesse kambrisse kuuluv elektriline kaar jagatakse plaatidega mitmeks osaks ja kustutatakse.

Masina tööpõhimõte ülekoormusel

Kui elektrienergia tarbijate liiga palju elektritoite on lülitatud, võib ilmneda vool, mille väärtus võib olla suurem kui selle toitevõrgu maksimumväärtus. Praktikas võib see juhtuda näiteks siis, kui korteris on sisse lülitatud pesumasin, triikraud, veekeetja, boiler, mikrolaineahi ja muud võimsad elektritarbijad.

Juhul, kui vooluahela tegelik vool ületab automaatnime nimiväärtuse, siis viimane loob termilise voolu.

Bimetallist plaat, mis koosneb kahest metallikihist, kuumutatakse, kui vool läbib seda. Kuumuse mõjul langeb see plaat, käib masina liikuva kontakti ja avab ahela.

Enne automaatse lüliti valimist. on vaja otsustada koormuse ja juhtmestiku tüübi üle, mille jaoks kaitse on paigaldatud. Selle tulemusena on näidatud automaadi nõutud positsioon.

Kaitselüliti nõuetekohane paigaldamine peab toimuma vastavate juhtmestike järgi. Selle protsessi nüansside kohta leiate siit.

Termoreaktsiooni väljalülitusvool on tavaliselt kaitselüliti nimivoolu võrra suurem kui 13-45%. Seda väärtust saab muuta reguleerimiskruviga tehaseseadistuste abil suhteliselt laiades piirides. Masina väljalülitamise ajaperiood on ülekoormuse ajal vajalik selleks, et vältida tarbetuid väljatõmbeid lühikese voolu suurenemisega, mis juhtub näiteks siis, kui mootor käivitub.

Lühis

Kui vooluringis esineb lühis, toimub kogu võrgu voolu kiire ja järsk tõus, sealhulgas elektromagnetilise vabastuse mähis. Tõsiselt suurenenud elektromagnetvälja mõjul tõmmatakse südamik ringi sisse. Südamiku kohal paiknev hoob toimib liikuva jõu kontaktis, katkestab selle fikseeritud kontakti ja avab elektrilise ahela.

Lühisevoolu mõju võib kahjustada ühendatud seadmete olekut, juhtmestikku ja isegi põhjustada tulekahju. Selliste voolude mõju vähendamiseks peaks vabastamise aeg olema minimaalne. Kaasaegne automaat lühisvooluga kokkupuutel käivitub mitte rohkem kui 0,02 sekundit.

Automaatne sisselülitamine - mida on vaja teha?

Kui automaat käivitub ülekoormuse tõttu, on ahel uuesti aktiveeritud alles pärast bimetallplaadi jahutamist. Sellisel juhul tuleb enne kaitselüliti uuesti lubamist analüüsida ahela koormust ja püüda seda vähendada, eemaldades mittevajalikud seadmed.

Enne vooluahela lülitamist pärast lühise lülitamist automaatselt, on vaja püüda leida selle nähtuse põhjuseks ja kõrvaldada.

Näiteks, ühendades kõik elektritarbijad, saate kontrollida juhtmestiku lühisignaali ise. Seejärel kontrollige elektritarbijaid ja leidke süüdlase lühise.

Kaasaegne LED-tehnoloogia on oluliselt laiendanud elamute ja kontoripindade kujundamise võimalusi. Näiteks - kaugjuhtimispuldiga LED-lambid sobivad koduvõimalustele tõhusaks lahenduseks.

Dioodlindi ühendamine tähendab 12-voldise toiteallika kasutamist, mida saate ise osta või kokku panna. Kuidas kaunistada oma auto LED-valgustusega - eraldi artikkel.

  1. Kaitselülitit kasutatakse elektriskeemi kaitsmiseks ülekoormuse ja lühise eest.
  2. Automaatonis avaneb ahel ajavööndiga, kui termiline ülekoormusseade on ülekoormatud, ja lühise korral - elektromagnetilise vabanemisega hetkeks.
  3. Enne taaskäivitamist pärast ülekoormuse automaatse käivitamist on vaja vähendada tarbijate arvu.
  4. Enne lukustuse automaatse käivitamise taaskäivitamist tuleb kõigepealt kõrvaldada lühise põhjus.

Elektrimasina tööpõhimõte videolõikudele

ALEX1887> Blog> Kuidas töötab kaitselüliti?

Tavalises töörežiimis voolab masin läbi nimiväärtusest väiksem või võrdne. Välise võrgu toitepinge saadetakse fikseeritud kontaktiga ühendatud ülemisele klemmile. Fikseeritud kontakti korral siseneb vool liikuva kontakt, mis on sellega suletud, ja sellest läbi painduva vaskjuhtme solenoidmähisega. Pärast solenoidit juhitakse voolu termiline vabastus ja seejärel alumine terminal, millele on ühendatud koormusvõrk.

Avariirežiimis lülitab kaitselüliti kaitserüttena vabakäiguvahetusmehhanismi käivitamise tõttu välja ja aktiveerub soojus- või elektromagnetilisest vabastusest. Selle toimingu põhjuseks on ülekoormus või lühis.

Termiline vabastamine on bimetallist plaat, mis koosneb kahest kihist sulamitest, millel on erinevad soojuspaisumise koefitsiendid. Elektrivoolu läbilõikamisel soojendab plaat kuumust ja paindub kihi suunas, mille soojuspaisumistegur on madalam. Kui praegune väärtus on ületatud, jõuab plaadikangus väärtuseni, mis on piisav, et käivitada väljalülitusmehhanismi, ja ahel avaneb, kaitstud koormuse lõikamisel.

Elektromagnetiline vabastus koosneb liikuvast terasest südamikust, mis on kinnitatud vedru abil. Kui antud hetkeline väärtus on ületatud, on elektromagnetilise induktsiooniseaduse kohaselt elektromagnetilise välja indutseeritav mähis, mille toimel südamik tõmmatakse solenoidküünla sees, ületab vedrutakistuse ja käivitub väljalülitusmehhanismi. Tavalises töös on ka mähis indutseeritud magnetväli, kuid selle tugevus ei ole piisav, et ületada vedru vastupidavust ja tõmmata südamikusse.

Kuidas masin töötab ülekoormuse režiimis
Ülekoormusrežiim toimub siis, kui kaitselülitiga ühendatud vool ületab nimiväärtust, mille jaoks on kaitselüliti kavandatud. Sellisel juhul põhjustab soojusliku vabanemisega läbi viidud suurenenud voolamine bimetallplaadi temperatuuri tõusu ja sellest tulenevalt ka painde suurenemise kuni väljalülitusmehhanismi käivitumiseni. Masin lülitub välja ja avab ahela.

Sisekaitse toimimine ei toimu koheselt, kuna see võtab natuke aega bimetallplaadi soojendamiseks. See aeg võib varieeruda sõltuvalt nimivoolu ületamisest mõnest sekundist tunnini.

Selline viivitus võimaldab vältida elektrikatkestust juhuslike ja lühiajaliste voolutugevuste juures vooluahelal (näiteks kui on sisse lülitatud suured käivitusvoolu elektrimootorid).

Minimaalne vool, mille juures termiline vabastamine peaks toimima, seatakse tehases kasutatava reguleerimiskruvi abil. Tavaliselt on see väärtus 1,13-1,45 korda suurem kui masina sildil näidatud nimiväärtus.

Vooluhulka, mille juures soojuskaitse töötab, mõjutab ka ümbritsev temperatuur. Kuumal ruumis soojendab ja nihutatakse bimetallist plaat, kuni see käivitub madalamal voolul. Madala temperatuuriga ruumides võib termiline voolutugevus olla suurem lubatud väärtusest.

Võrgu ülekoormuse põhjuseks on tarbijate ühendamine sellega, mille koguvõimsus ületab kaitstud võrgu nimivõimsust. Erinevate võimsate kodumasinate (õhu konditsioneerimine, elektripliit, pesumasin ja nõudepesumasin, triikraud, elektriline veekeetja jne) samaaegne kaasamine võib viia soojuse vabanemiseni.

Sellisel juhul otsustage, millist tarbijat saab keelata. Ja ärge kiirustades uuesti masinat sisse lülitama. Te ei saa seda ikkagi tööasendisse tagasi viia, kuni see jahutab, ja vabastuse bimetallplaat ei jõua tagasi oma algsesse olekusse. Nüüd sa tead, kuidas ülekoormuslüliti töötab.

Kuidas masin töötab lühise režiimis
Lühisekaitse korral on kaitselüliti tööpõhimõte erinev. Lühemate voolude korral suureneb vooluring dramaatiliselt ja korduvalt väärtustele, mis võivad juhtmestikku sulandada, või juhtmete isolatsiooni. Selliste sündmuste arengu vältimiseks tuleb kett kohe katkestada. Elektromagnetiline vabastus on just see, mis toimib.

Elektromagnetiline vabastus on solenoidmähis, mille sees on terasest südamik, mis on vedru all fikseeritud asendis.

Kaitselülitite seade ja tööpõhimõte

Elektrivõrkude kaitse tagamiseks kaitselülitite abil. Tänu lihtsale paigaldamisele ja remondile võis sarnaseid seadmeid võita populaarsust ja ka kompaktseid mõõtmeid.

Välimuselt näeb see seade välja plastikust kasti, mis on vastupidav kõrgetele temperatuuridele. Esipaneelil on seadme sisselülitamiseks ja välja lülitamiseks käepide. Tagakülg on varustatud spetsiaalse lukuga lüliti kinnitamiseks ning ülemised ja alumised kaaned on varustatud spetsiaalsete vormikomplektidega. Käesolevas artiklis käsitleme andmetöötlusseadmete tüüpe, nende kujundust ja diferentsiaalkaitse lülitamise põhimõtet.

Voolukatkestite tüübid

Sarnased seadmed on jagatud mitmeks:

  • paigaldusmasinad - on varustatud plastkarpiga, nii et neid seadmeid saab paigaldada elamupiirkonda ilma vigastuste ohtu tekitamata;
  • universaalsed automaatmasinad - nad ei ole varustatud kaitsekestaga ja seetõttu saab neid paigaldada ainult spetsiaalse turustusseadmetele;
  • kiire masinad - funktsioon on see, et reaktsiooniaeg on alla 5 millisekundi;
  • aeg-ajastatud automaadid - sellistes mudelites on vastamisaeg vahemikus 10 kuni 100 millisekundit;
  • selektiivseid sarnaseid seadmeid saab seadistada spetsiaalsele väljalülitusajale lühisevoolu piirkonnas;
  • pöördvoolu elektriseade - seade töötab ainult siis, kui teatud suunas muutub praegune suund;
  • polariseeritud seadmed - voolu märkimisväärsest hüppest tingimusel lülitage ahela sektsioon välja;
  • pole polariseeritud - töö sama kui eelmine ainult praeguse suuna kõigis suundades.

Erinevad kaitselülitid

Väljalülituskiirus sõltub seadme põhimõttest. Samuti sõltub väljalülituskiirus teatud ahela osa hetkekanalite katkestamiseks vajalike tingimuste olemasolust. Need tingimused on loodud elektriseadmetes, mis töötavad vastavalt praegusele piirangutele.

Circuit Breaker Design

Töömeetodid, samuti selliste seadmete disainifunktsioonid sõltuvad rakendusvaldkonnast ja seadmesse määratud ülesannetest. Seadmete käivitamine ja seiskamine võib toimuda käsirežiimil või elektromagnetilise ja elektromehaanilise ajamiga.

Kaitseseadmetes, mille nimivõimsus on kuni 1000 amprit, on käsirelv. Selle tehnika peamine omadus on maksimaalne lülitusvõimsus, mis ei ole seotud käepideme kiirusega. See tähendab, et toiming peab lõpule jõudma, et muudatused jõustuksid.

Mõnel juhul on vaja lülitite ise parandamist, soovitame lugeda seda artiklit järkjärguliste juhistega. Saate teada, kuidas maja korralikult varustada maja, klõpsates lingil http://vse-postroim-sami.ru/engineering-systems/electrician/433_kak-sdelat-zazemlenie-v-dome/ nagu seina varras.

Elektrimootorite või elektromagnetiliste elementide toiteallikaks on elektrivool. Sellised skeemid peavad olema varustatud kaitsega suvalise taaskäivitamise vastu. Samuti peaks seade sisselülitamise protsess peatuma, kui pinge kaitsesektsioonis laieneb või väheneb 85% -lt tavapärasest 110% -ni.

Võrgu ülekoormusest või lühisest tingituna toimub masina automaatne seiskamine sõltumata seadme käivitamise / seiskamise eest vastutava käepideme positsioonist.

Elektromagnetilise vabastusega kaitselüliti konstruktsioon

Üks olulisemaid kaitselülitite komponente võib lugeda reisiks. See osa kontrollib võrgupiirkonna teatavat omadust ja hädaolukorras toimib see spetsiaalse elemendi abil, mis lülitab seadme välja. Lisaks on masina väljalülitamiseks vajalik vabastamine. Kõige levinumad tänapäeva turul on järgmised tüübid:

  • elektromagnetiline - kaitsta juhtmestikku lühistest;
  • soojusenergia - kaitseks elektrivoolu vastu;
  • segatud
  • pooljuht - seda tüüpi iseloomustab kergesti reguleerimine ja seiskamisseadete märkimisväärne stabiilsus

Mõnel juhul, kui on vaja ühendada vooluahela ilma elektrivooluta, võivad nad kasutada kaitsvaid elektriseadmeid, mis pole varustatud vabastamisega.

Kaasaegses maailmas toodetakse suur hulk kaitsvaid elektriseadmeid, mida saab kasutada erinevates ilmastikutingimustes ja asetada erinevatesse ruumidesse. Samuti on erinevad seadmed seeriad mõeldud paigaldamiseks rasketes tingimustes ja neid iseloomustab agressiivsete välistegurite vastupidavuse erinevus.

Kõik vajalikud andmed, mida tuleks enne nende seadmete ostmist lugeda, on reguleerivas ja tehnilises dokumentatsioonis. Enamikul juhtudel esitatakse tootja spetsifikatsioon. Harvadel juhtudel võib üldistada kauba, mida kasutatakse erinevates valdkondades ja mida teevad samaaegselt suur hulk ettevõtteid, dokumentatsiooni taset ja mõnel juhul ka Gosstandardi jaoks.

Erinevad releaserid edastatakse

Selle seadme disain sisaldab järgmisi komponente:

  • automaatne väljalülitus süsteem;
  • kontrollisüsteem;
  • kontakt süsteem;
  • kaar väljasuremise võre;
  • reisiüksused.

Kontaktsüsteemi esindavad mitmed staatilised kontaktid, mis on paigaldatud korpusesse, samuti mitmed dünaamilised kontaktid. Viimased on hingede abil kinnitusklambriga. Süsteem on mõeldud elektrivõrgu üheks katkestuseks.

Kaar-lunastusmehhanism on monteeritud automaadi mõlemasse positsiooni, mis on vajalik kaarse sissetungimiseks ja jahutamiseks, kuni see täielikult kaob. Tegelikult on see mehhanism kaaride kustutamiseks, milles on paigaldatud metallplaatide deioniline võre. Mõnikord saab mehhanismi varustada kiudplaatide kujul spetsiaalsete sädemepüüduritega.

Automaatne väljalülitussüsteem on kolme või nelja liidesega seotud seade. Seda süsteemi kasutatakse kontaktide viivitamatuks väljumiseks ja välja lülitamiseks. Seda saab kasutada nii käsitsi kui automaatsetes seadmetes.

Elektromagnetväljund on tavaline elektromagnet koos konksuga. Seade on mõeldud kogu süsteemi väljalülitamiseks lühise ajal automaatses režiimis. Mõned releaserid on lisaks varustatud hüdro-aeglustussüsteemiga.

Termostaatimis automaatides on spetsiaalne metallplaat. Pinge olulise suurenemisega deformeerub see plaat, mille järel tehakse automaatne seiskamine. Kui pinge tõuseb, lühendatakse kokkupuuteaeg.

Termokaitsega kaitselüliti ahel

Pooljuhtide element on kujutatud mõõteseadmega, magnetiga ja releeüksusega. Magnet mõjutab kaitselüliti automaatset väljalülitamist.

Sellisel juhul on mõõtesüsteemi esindatud elektritrafo või magnetiline võimendi. Esimest kasutatakse vahelduvvoolu jaoks, teine ​​aga alalisvooluks.

Enamikus kaitseseadmetes kasutatakse kombineeritud väljalülitusseadmeid, mis kasutavad termoelemente, mis kaitsevad praeguse tõusu eest ja magnetpoolide kaitsmiseks lühise eest.

Kaitsevahendi disain sisaldab mõnda komponenti, mis on paigaldatud masinasse või sellest väljaspool. Need elemendid võivad olla mitmesuguste väljundite, lisakontaktide, kaugjuhtimispuldi ajamite, automaatse seiskamise signaali.

Kaitselüliti tööpõhimõte

Normaalse töörežiimi korral kulgeb voolu läbi voolukatkesti, mille võimsus peaks olema väiksem ja võrdne normaalväärtusega. Elektrit, mida kasutatakse seadme toiteks, antakse seadme ülaserva terminalile, mis on ühendatud staatilise kontaktiga. Sellest kontaktist läheb vool dünaamiliseks kontaktiks, mille järel see läbib metalli juhtme ja tabab solenoidi mähise.

Pärast rulliga läbimist läbib termoülekande kaudu elektrienergiat ja alles pärast seda lülitatakse vool elektri kaitsva elektriseadme alumisse ossa.

Pinge märkimisväärse suurenemise või lühise tekkimise ohu korral lülitatakse elektri kaitsevarustus võrgust välja. Seda tehakse automaatse väljalülitusseadise abil, mis käivitub soojus- või elektromagnetilisel vabastamisel.

Kaitselüliti tööpõhimõte

Masina tööpõhimõte ahela ülekoormuse ajal

Kaitselülitite peamine eesmärk on kaitsta võrgu osa ülekoormuse või lühise ajal. Võrgu ülekandmine tähendab, et teatud osa voolutugevus on läbinud antud elektriseadme kaitseseadme maksimaalse väärtuse. Soojusenergia vabanemine läbib liiga palju voolu, põhjustades selle deformeerumise. Sõltuvalt efektiivvoolu ja tavapärase väärtuse erinevusest jõuab deformatsioon teatud tasemele, mis võib põhjustada masina sulgemise.

Masina termokaitse ei toimi koheselt, kuna metallplaadi deformeerimiseks on vaja seda piisavalt soojendada. Väljalülitamise aeg sõltub otseselt kaitstud ala liigsest voolust ja võib olla sama palju kui mõni sekund või tund.

Selline viivitus on vajalik, et automaat ei tööta kogu aeg võrgu teatud osa lühikeste või lühikeste hüppetega. Enamikul juhtudel esinevad sellised hüpped, kui elektriseadmed on sisse lülitatud suurel määral käivitusvooluga.

Vooluhulk, millega termoelektriline element töötab kaitsva elektriseadme juures, seadistatakse tootmisettevõtte reguleerimisosaga. Reeglina peaks see väärtus olema tavapärasest arv 1,1-1,5 korda suurem.

Samuti peaksite teadma, et kõrgtemperatuurse ruumides võib masin töötada korrektselt, kuna termiline element võib deformeeruda kiiremini kui vaja. Madalate temperatuuride ruumides töötab masin pärast seda, kui on nõutud aega.

Seadme tööpõhimõte ülekoormuskontuuri ajal

Elektrivõrgu ülekoormus tekib juhul, kui ühendatakse suur hulk seadmeid, mille koguvõimsus ületab tavalise võimsuse. Mitmete võimsate elektriseadmete kaasamine tõenäoliselt käivitab termilise elemendi.

Kui see juhtub, peaksite enne masina sisselülitamist otsustama, millised seadmed tuleks välja lülitada, lahti ühendada ja natuke ootama. See aeg on vajalik kaitse elektriseadme soojusliku elemendi jahutamiseks ja algses asendis.

Vooluahela tööpõhimõte lühise ajal

Automaatlülitite seade võimaldab kaitsta elektrilist vooluahelat mitte ainult ülekoormusest, vaid ka lühistest. Selliste hädaolukordade korral suureneb vooluhulk nii palju, et juhtmestiku isolatsioon võib sulada. Selliste probleemide vältimiseks peate võrgu viivitamatult välja lülitama. See ülesanne on määratud elektromagnetilisele vabastamisele.

See element koosneb solenoidist mähisest ja terasest südamikust, mis on kinnitatud spetsiaalse vedru abil. Süvise mähise hetkevool hüppab magnetilise induktsiooni proportsionaalse suurenemise, mille tagajärjel südamik sobib tihedamalt kevadega. Kuna magnetilise induktsiooniga suureneb, tõmbab teraspea vedru mõju ja vajutab lülitit.

Pärast seda avanevad kontaktid koheselt ja elektrivarustus varustatakse kaitstud alaga. Elektromagnetiline element lülitub kohe sisse ja takistab isolatsiooni süttimist.

Avariiolukorras kontaktide lahtiühendamisel tekib selle vahel nn kaar, mille maksimaalne temperatuur on 3000 kraadi. Ütlematagi selge, et elektriliste kaitseseadiste elemente tuleb kaitsta niisuguste kõrgete temperatuuride eest. Nendel eesmärkidel on automaadid varustatud spetsiaalsete kaarlampide vältimise süsteemidega. See seade näeb välja nagu kasti, mis koosneb mitmest metallplaadist.

Erinevad kaarekambrid

Kõrgtemperatuuriline kaar kuvatakse kontaktühenduse lahutamise kohas. Seejärel liigub kaare üks rida piki dünaamilist kontakti ja teine ​​läbib staatilist elementi, lülitub metalli juhtmele ja jõuab seejärel kaare väljalaskeseadme tagumisse serva. Plaatide võrku jõudes jagatakse kaar osadeks, kaotab temperatuuri ja lõpuks kaob. Kaitselüliti alumisel küljel on kaare vabastamiseks moodustatud gaaside eraldamiseks spetsiaalsed avad.

Kui kaitstav elektriseade on lühisest põhjustatud, siis ei saa te elektrilist sisselülitamist enne, kui olete avastanud selle põhjuse. Enamikul juhtudel on probleem ükskõik millise elektriseadme rike.

Seadme taaskäivitamiseks ühendage elektriseade lahti ja proovige lüliti käivitada. Kui see juhtus ja varustus ei läinud lähitulevikus välja, tähendab see, et probleem seisneb seadmete lagunemises. See jääb alles empiiriliselt, et teada saada, milline konkreetne seade on ebaõnnestunud. Kui pärast kõigi seadmete lahutamist käivitub kaitselüliti, siis on probleem juhtmestiku isolatsioonivõrk. Sellise tõrke kõrvaldamiseks peate helistama spetsialiste, kes suudavad kahju tuvastada ja parandada.

Kui teil tekib selline probleem nagu kaitsvate elektriseadmete püsiv lahtiühendamine, siis ei tohiks installida uut kõrgema nimivoolu väärtusega seadet - need toimingud ei lahenda probleemi. See seade on paigaldatud, võttes arvesse traadi ristlõikepinda, mis tähendab, et juhtmestikus lihtsalt ei saa tekkida liiga suur vool. Tõrke põhjuse kindlakstegemiseks ja kõrvaldamiseks aitab see asjakohaste ekspertide jaoks sõltumatut tegevust äärmiselt riskantne.