Milline automaatmaja maja sisendisse sisestamiseks on?

  • Postitamine

Elektriseadet, elektriseadet ei tohi kasutada ilma ohutusautomaatika. Kaitselüliti (AV) on paigaldatud konkreetsele seadmele või ühele reale ühendatud tarbijarühmale. Selleks, et õigesti vastata küsimusele, kui palju võimsus vastab näiteks 25A automaatidele, peaksite kõigepealt tutvuma kaitselüliti seadme ja kaitseseadiste tüüpidega.

Struktuuriliselt ühendab AB mehaanilist, termilist ja elektromagnetilisi releesid, mis töötavad üksteisest sõltumatult.

Mehaaniline vabastus

Seadistatud masina sisse / välja lülitamiseks käsitsi. Võimaldab seda kasutada kommutaatorina. Seda kasutatakse võrguühenduse katkestamiseks remonditööde käigus.

Soojuse vabastamine (TR)

Selle kaitselüliti osa kaitseb vooluringi ülekoormuse eest. Vool kulgeb läbi bimetallplaadi, kuumutades seda. Termiline kaitse on inertsiaalne ja suudab lühidalt üle saada läviväärtusi (In). Kui vool ületab pikka aega nimivoolu, soojeneb plaat nii palju, et see deformeerib ja lülitab AB välja. Pärast bimetallplaadi jahutamist (ja ülekoormuse põhjuse kaotamist) lülitatakse masin käsitsi sisse. Automaattis 25A tähistab joonis 25 künnist TP käivitamiseks.

Elektromagnetiline vabastus (ER)

Lühise ajal lühistab elektriseade. Lühis on tekitatud lühisülekanded vajavad kaitseseadme hetkekiirust, mistõttu erinevalt soojusallikatest vabaneb elektromagnetilise vabanemisega koheselt sekundi murdosa. Väljalülitamine tekib tänu voolu läbilaskmisele solenoidi spiraali ja liikuva terasüdamiku poolt. Solenoid, kui see käivitub, kaotab vedru takistuse ja lülitab välja kaitselüliti liikuva kontakti. Lingi katkestamiseks on vaja voolu, mis ületab In, sõltuvalt AB liigist kolmelt kuni viiekümmend korda.

AB tüübid vastavalt ajahetkeparameetritele

Pöörake tähelepanu tööstuslike elektroonikaseadmete ja mootorite kaitseseadmetele, millel on sisseehitatud termoreleed, ja kaaluge kõige tavalisemaid masinaid:

  • Iseloomulik B - kolme korda suurem In, TP käivitub pärast 4-5s. ER toimimine üle kolme kuni viis korda. Neid kasutatakse valgustusvõrkudes või kui ühendate palju väikese võimsusega tarbijaid.
  • Iseloomulik C - kõige tavalisem AB tüüp. TR käivitub 1,5 sekundi jooksul, viiekordselt ületas In, käivitas ER 5-10-kordselt üle. Neid kasutatakse erinevate võrkude jaoks, kaasa arvatud erinevat tüüpi seadmed, sealhulgas väikeste käivitusvooludega seadmed. Elutsoonide ja administratiivhoonete põhikaitselülitid.
  • Iseloomulik D - kõrgeima ülekoormusega masinad. Kasutatakse elektrimootorite, suure jõuülekandega energiakandjate kaitsmiseks.

AB ja elektritarbijate nimiväärtuste suhe

Selleks, et määrata, kui palju kilovatti saab teatud võimsusega kaitselülitiga ühendada, kasutage tabelit:

Kaitselülitite peamised tehnilised omadused

Praktilises rakenduses on oluline mitte ainult teada voolukatkestite omadused, vaid ka mõista, mida need tähendavad. Selle lähenemisviisi abil saate otsustada enamiku tehniliste probleemide üle. Vaatame, mida mõeldakse etiketil märgitud või muude parameetritega.

Kasutatud lühend.

Märgistusseadmed sisaldavad kogu vajalikku teavet, mis kirjeldab kaitselülitite põhiomadusi (edaspidi AB). Mida nad mõtlevad, selgitatakse allpool.

Ajavoolu tunnus (BTX)

Selle graafilise kuva abil on võimalik saada tingimuste visuaalne kuju, mille alusel aktiveeritakse vooluahela lülitamise mehhanism (vt joonis 2). Graafikul näitab vertikaalkaugus AB-i aktiveerimiseks vajalikku aega. Horisontaalne skaala näitab suhet I / In.

Joon. 2. Kõige tavalisemate automaattiitrite praeguste omaduste graafiline kuva.

Lubatav ülekoormus määrab ajavoolu omaduste tüübi, mis vabastatakse seadmetes, mis toodavad automaatset väljalülitamist. Vastavalt kehtivatele eeskirjadele (GOST P 50345-99) on igale tüübile määratud tähis (ladina tähtedega). Lubatav ülejääk määratakse koefitsiendiga k = I / In iga tüübi kohta standardväärtused (vt joonis 3):

  • "A" - maksimaalne - kolm korda suurem;
  • "B" - 3 kuni 5;
  • "C" - 5-10 korda korrapärasem;
  • "D" - 10-20 korda üleliigne;
  • "K" - 8-14;
  • "Z" - veel 2-4 töötajat.
Joonis 3. Põhiliste aktiveerimisparameetrite erinevad tüübid

Pange tähele, et see diagramm kirjeldab täielikult solenoidi ja termoelemendi aktiveerimise tingimusi (vt joonis 4).

Solenoidi ja termoelemendi töötamise tsoonide graafik

Ülaltoodu põhjal võime kokku võtta, et AB-i peamine kaitsetunnus on tingitud ajavoolu sõltuvusest.

Tüüpiliste ajavooluomaduste loend.

Olles otsustanud märgistamise üle, jätkame kaalumist erinevatele seadmetele, mis vastavad kindlale klassile sõltuvalt omadustest.

Kaitselülitite laua ajavoolu omadused

Tüüp "A" iseloomulik

Selle kategooria termokaitse AB aktiveeritakse, kui vooluahela suhe nominaalseks (I / In) ületab 1,3. Nendes tingimustes toimub sulgemine 60 minuti pärast. Kuna nimivool on veelgi ületatud, vähendatakse reisi aega. Elektromagnetiline kaitse aktiveerub, kui nominaalne väärtus kahekordistub, vastamissagedus on 0,05 sekundit.

See tüüp on loodud ahelates, mis ei kuulu lühiajalise ülekoormuse alla. Näiteks võime võtta pooljuhtseadiste ahelad nende ebaõnnestumise korral, praegune ületamine on ebaoluline. Seda tüüpi ei kasutata igapäevaelus.

Funktsioon "B"

Selle tüübi erinevus eelmisest on operatsiooni voolus, see võib standardist ületada kolm kuni viis korda. Sellisel juhul aktiveeritakse solenoidmehhanism viiekordse koormusega (pinge väljalülitusaeg - 0,015 s), termoelement - kolmekordne (mitte rohkem kui 4-5 sekundit, vajadus välja lülitada).

Selliste seadmete tüübid on leidnud rakenduse võrkudes, mille jaoks suured pingevoolud pole iseloomulikud, näiteks valgustusahelate jaoks.

S201, mille on valmistanud ABB ajavoolu omadustega B

Iseloomulik "C"

See on kõige tavalisem tüüp, selle lubatav ülekoormus on suurem kui kahe eelmise tüübi puhul. Kui nominaalset režiimi ületatakse viis korda, aktiveerub termoelement, see on ahel, mis lülitab toiteallika välja pooleteise sekundi jooksul. Solenoidmehhanism aktiveeritakse, kui ülekoormus ületab normi kümnekordselt.

AB andmed on kavandatud kaitsma elektrilist vooluringi, milles võib esineda mõõdukas käivoolu, mis on tüüpiline leibkonna võrgule, mida iseloomustab segakoormus. Seadme ostmine kodus on soovitatav valida see vorm.

Triplex Legrandi masin

Iseloomulik "D"

Seda tüüpi AB-d iseloomustavad suured ülekoormuse omadused. Nimelt kümnekordne ülemäärane norm thermoelement ja kakskümmend kordne jaoks solenoid.

Kandke selliseid seadmeid suurel algusvooluga ahelatel. Näiteks asünkroonsete elektrimootorite käivitusseadmete kaitsmiseks. Joonisel 9 on näha selle rühma kaks instrumenti (a ja b).

Joonis 9. a) BA51-35; b) BA57-35; c) BA88-35

Iseloomulik "K"

Sellistel AV-del on solenoidi mehhanismi aktiveerimine võimalik, kui praegune koormus ületatakse 8 korda ja see tagatakse juhul, kui on 12-kordne normaalne režiim ülekoormus (kaheksateistkordne konstantse pinge korral). Koorma väljalülitamise aeg ei ületa 0,02 sekundit. Termoelemendi puhul on selle aktiveerimine võimalik tavalisest režiimis üle 1,05.

Rakendusala - induktiivkoormusega ahelad.

Iseloomulik "Z"

Seda tüüpi eristab väike lubatud nimivoolu ületav väärtus, minimaalne piir on standardi kaks korda suurem, maksimaalne on neli korda. Termoelemendi tööparameetrid on samad, mis AB-le iseloomuliku K-ga.

Seda alamliiki kasutatakse elektrooniliste seadmete ühendamiseks.

Iseloomulik "MA"

Selle grupi eripära on see, et koorma lahutamiseks termoelementi ei kasutata. See tähendab, et seade kaitseb ainult lühistest, on elektrimootori ühendamine üsna piisav. Joonis 9 näitab sellist kohanemist (c).

Nominaalne töövool

See parameeter kirjeldab tavapärase töö maksimaalset lubatud väärtust, kui see on ületatud, aktiveeritakse koorma lastav süsteem. Joonisel 1 on näidatud, kus see väärtus kuvatakse (IEK tooted on näide).

Regulaarne töö voolab ringi

Termilised parameetrid

Termin tähistab termoelemendi töötingimusi. Neid andmeid saab saada vastavast ajagraafikust.

Ultimate breaking capacity (PKS).

See tähis tähendab maksimaalset lubatavat koormust, mille korral seade suudab kontuuri avada ilma jõudlust kaotamata. Joonisel 5 on see märgistus tähistatud punase ovaalsega.

Joon. 5. Seadme tootja Schneider Electric

Praegune piirkategooria

Seda terminit kirjeldatakse AB-i võime lahti ühendada enne, kui selle lühisevool jõuab maksimumini. Kohandused on saadaval kolme liigi praeguse piiranguga, olenevalt laadimisaja väljalasetest:

  1. 10 ms ja rohkem;
  2. 6 kuni 10 ms;
  3. 2,5-6 ms.

Seega, mida suurem kategooria, seda väiksem on elektrijuhtmete kuumusega kokkupuude, mistõttu väheneb selle süüte oht. Joonisel 6 on see kategooria ringiga punane.

Tähis BA47-29 tähistab praeguse piirangu klassi

Pidage meeles, et esimese kategooria AB-l ei pruugi olla asjakohast märgistust.

Väike elu, kuidas valida kodus õige lüliti

Pakume mõningaid üldisi soovitusi:

  • Tuginedes kõigile ülalnimetatutele, peaksime valima AB-ga ajahetke "C".
  • Standardsete parameetrite valimisel tuleb kaaluda kavandatud koormust. Arvutamiseks tuleks kasutada Ohmi seadust: I = P / U, kus P on ahela võimsus, U on pinge. Voolutugevuse (I) arvutades valime nominaalse AB vastavalt tabelile, mis on kujutatud joonisel 10. Joonis 10. Diagramm AB valimiseks sõltuvalt koormusvoolust

Kirjutame, kuidas ajakava kasutada. Näiteks, koormusvoolu arvutamisel saime tulemuse 42 A. Teil tuleb valida automaat, kus see väärtus asub rohelises tsoonis (tööpiirkonnas), siis see on 50 A. Valikus peaks arvestama ka seda, milline on praegune tugevus juhtmestiku jaoks.. Selle väärtuse põhjal on lubatud masin valida, tingimusel et koormusvool on väiksem kui juhtmestiku arvutuslik vool.

  • Kui on ette nähtud jäävvooliseade või diferentsiaal voolukatkesti, tuleb tagada maandamine, muidu need seadmed ei pruugi korralikult töötada;
  • Parem on eelistada tuntud kaubamärkide tooteid, need on usaldusväärsemad ja kauem kui Hiina tooted.
  • Millised on voolukatkestite praegused omadused?

    Elektrivõrgu ja kõigi seadmete tavapärase töö ajal voolab kaitselüliti läbi elektrivoolu. Kuid kui praegune tugevus mingil põhjusel ületab nimiväärtusi, avaneb ahel voolukatkesti vabastuse tõttu.

    Kaitselülitile iseloomulik vastus on väga oluline tunnus, mis kirjeldab, kui palju automaadi reaktsiooniaega sõltub automaatma voolava voolu suheest automaadi nimivoolu.

    Seda omadust keerleb asjaolu, et selle väljendamiseks on vaja kasutada graafe. Sama reitinguga automaadid lahutatakse erinevalt erinevatel hetkel kehtivatel ületamistel olenevalt automaatkõvera tüübist (mõnikord nimetatakse praeguseks omaduseks), mille tõttu on erinevate laadimistsüklite puhul võimalik kasutada erinevate parameetritega automaate.

    Seega toimub ühelt poolt kaitsevvoolu funktsioon ja teisest küljest tagatakse väärkähiste vähim arv - see on selle tunnusjooni tähtsus.

    Energiatööstuses on olukordi, kus lühiajaline voolu suurenemine ei ole seotud avariirežiimi ilmnemisega ja kaitse ei tohiks selliseid muutusi reageerida. Sama kehtib ka masinate kohta.

    Kui lülitate mõnda mootorit sisse, näiteks lastekolbpump või tolmuimeja, tekib reas piisavalt suur impulsivool, mis on tavalisest mitu korda kõrgem.

    Vastavalt töö loogikale peab masin loomulikult lahti ühendama. Näiteks mootor kulutab käivitusrežiimis 12 A ja töörežiimis - 5. Seade maksab 10 A ja lõigab selle maha 12. Mida siis teha? Kui näiteks on seatud 16 A, siis on ebaselge, kas see lülitub välja või mitte, kui mootor on kinni keeratud või kaabel on suletud.

    Seda probleemi oleks võimalik lahendada, kui see asetatakse väiksemale voolule, kuid siis käivitub see mis tahes liikumisega. Sel eesmärgil leiutas selline automaatkontseptsioon välja, kuna see on "ajavoolu iseloomulik".

    Millised on ajad, voolukatkestite praegused omadused ja nende erinevus

    Nagu on teada, on kaitselülitite peamised käivitusseadmed termilised ja elektromagnetilised releaserid.

    Termiline vabastamine on bimetallist plaat, mis voolava vooluga kuumutamisel painutatakse. Seega käivitub mehhanism pika ülekoormuse käivitumisega, pöördvõrdeline viivitus. Bimetallilise plaadi kuumutamine ja vabastamise reaktsiooniaeg sõltuvad otseselt ülekoormuse tasemest.

    Elektromagnetiline vabastus on solenoid koos südamikuga, solenoid magnetilist väli teatud sügavkülgel joonestub, mis käivitab vabastusmehhanismi - tekib hetkeline lühis, nii et mõjutatud võrk ei oota, kuni termiline vabastamine (bimetallplaat) soojeneb automaatselt.

    Vooluahela reaktsiooniaja sõltuvus kaitselülitit läbivast voolust määrab voolukatkesti ajaomadused.

    Tõenäoliselt märkisid kõik, et modulaarsete masinate korpustes on ladina tähed B, C ja D. Nii iseloomustavad nad elektromagnetilise vabanemise seatud punkti mitmekordsust automaadi nominaalväärtuseks, tähistades selle ajavoolu omadust.

    Need tähed näitavad masina elektromagnetilise vabanemise hetkelist voolu. Lihtsamalt öeldes näitab kaitselüliti väljalülitamise näitaja kaitselüliti tundlikkust - madalaimat voolu, mille juures lüliti lülitub koheselt välja.

    Masinal on mitu omadust, millest kõige sagedamini on:

    • - B - 3 kuni 5 × In;
    • - C - 5 kuni 10 × In;
    • - D - 10-20 × In.

    Mida ülalnimetatud numbrid tähendavad?

    Ma annan väikese näite. Oletame, et on kaks sama võimsusega (võrdelist nimivoolu) automaatset masinat, kuid vastuseomadused (ladina tähed automaatmasinal) on erinevad: automaatmasinad B16 ja C16.

    B16 elektromagnetiliste releaserite tööpiirkond on 16 * (3. 5) = 48. 80A. C16 puhul on hetkeseisundi voolude vahemik 16 * (5. 10) = 80. 160A.

    A 100 A voolu korral lülitub automaatne väljalülitus B16 peaaegu kohe, samal ajal kui C16 lülitub kohe välja, kuid pärast mõne sekundi möödumist termokaitse (pärast seda, kui bimetallplaat soojeneb).

    Ehitistes ja korterites, kus kooremid on puhtalt aktiivsed (ilma suurte käivitusvooluta) ja mõned võimsad mootorid lülitatakse harvemini, on kõige tundlikumad ja eelistatumad kasutada automaatseid omadustega B. Praeguseks on iseloomulik C väga tavaline, mida saab kasutada ka elamute ja büroohoonete jaoks.

    D omaduste osas sobib see lihtsalt elektrimootorite, suurte mootorite ja muude seadmete toiteks, kus nende sisselülitamisel võivad olla suured käivitusvoolud. Samuti võib lühendatud tundlikkusega lühisühenduse korral olla soovitatav kasutada automaatrežiimi D-tunniga sissejuhatavaid valikuid, mille puhul suuremat rühma AB lühikeseks ühendamiseks, et suurendada võimalusi.

    Loogiliselt kokku leppida, et reaktsiooniaeg sõltub masina temperatuurist. Automaat sulgub kiiremini, kui selle soojusenergiat (bimetallplaat) kuumutatakse. Vastupidi, kui te esmakordselt sisselülitate, kui bimetallautomaadi külma väljalülitusaeg on pikem.

    Seepärast iseloomustab graafik ülemist kõverat automaadi külma olekus, madalam kõver kujutab endast automaatset kuuma seisundit.

    Punktiirjoon näitab automaatväljundi praegust piirväärtust kuni 32 A.

    Mida kuvatakse graafiku ajavoolu omadustes

    Kasutades näitena 16-amprivõimendiga kaitselülitit, millel on ajavoolu tunnus C, proovime kaaluda kaitselülitite reaktsioonivõimalusi.

    Graafik näitab, kuidas vooluahela kaudu voolav vool mõjutab selle väljalülitamise aja sõltuvust. Ahelon voolava voolu arvukus automaadi nimivoolule (I / In) tähistab X-telge ja reaktsiooniaega sekundites Y-teljel.

    Eespool öeldi, et elektromagnetiline ja termiline vabastamine on masina osa. Seetõttu võib ajakava jagada kaheks osaks. Graafiku järsu osa näitab ülekoormuskaitset (termilise vabastamise töö) ja lühemat osa, kaitse lühise eest (elektromagnetiliste vabastuste töö).

    Graafikus võib näha, et kui C16 on ühendatud koormusiga 23, siis peaks see 40 sekundi jooksul välja lülituma. See tähendab, et kui ülekoormus tekib 45% võrra, lülitub seade välja 40 sekundi pärast.

    Suurte voolude puhul, mis võivad elektrijuhtmete isolatsiooni kahjustada, on masin võimeline reageerima koheselt elektromagnetilise vabastuse tõttu.

    Kui 5x In (C) vool läbib C16 masinat (80 A), peaks see töötama pärast 0,02 s (see tähendab, et masin on kuum). Külma olekuga niisugusel koormusel lülitub see 11 sekundi jooksul välja. ja 25 sekundit (masinate puhul kuni 32 A ja üle 32 A).

    Kui masin läbib 10 × voolu, lülitub see välja 0,03 sekundi jooksul külmas olekus või vähem kui 0,01 sekundit kuuma olekus.

    Näiteks juhul, kui tekib lühise Circuit, mis on kaitstud C16 kaitselüliti ja 320 Amps vool, tekib kaitselüliti ahela katkestusaeg 0,008 kuni 0,015 sekundit. See eemaldab avariijuhtme võimsuse ja kaitseb seadet, mis lukustub elektriseadme ja elektrijuhtmetega, tulekahju ja täielikku hävitamist.

    Masinad, mille omadusi eelistatakse kodus kasutada

    Korterites, kus on võimalik, on vaja kasutada B-kategooria automaatseid masinaid, mis on tundlikumad. See masin töötab ülekoormuse eest samamoodi nagu C-kategooria masin. Aga kui tegemist on lühisega?

    Kui maja on uus, hea elektriseade, alajaam on lähedal ja kõik ühendused on kõrge kvaliteediga, siis võib lühisvool jõuda selleni, et see peaks olema piisav isegi sisendautomaadi käivitamiseks.

    Vool võib osutuda väikesteks, kui maja on vana, lühikeseks, kui see on vana, ja liiga suurte takistustega trahvid (eriti maapiirkondade võrkudes, kus on suur takistus, faaside null) - sel juhul ei pruugi C-kategooria automaatne töö üldse töötada. Seega on ainus võimalus sellest olukorrast B-tüüpi omadustega automaatide paigaldamiseks.

    Sellest tulenevalt on B-tüüpi omadus kindlasti eelistatavam, eriti lastekodus või maal või vanas fondis.

    Igapäevaelus on soovitav paigaldada automaattiklassi C tüüp ja pistikupesade ja valgustuse jaoks rühma-liinide B-tüüpi automaatrežiim. Seega saab jälgida selektiivsust ja sisendautomaat ei lülitu välja ega kustuta kõiki korter.

    Mugav kodu

    Kommunikatsioon majas

    Täname teid ühiskondlikus ühiskonnas jagamise eest. võrgud:

    Vooluahela spetsifikatsioonid

    Vooluahela spetsifikatsioonid - kaitseümbrised

    Kaitselülitite omadused (allpool lühendatud - automaatne) on oluline tegur iga seadme elektriseadmete kaitse valimisel

    Kaitselüliti tuleb valida, pidades silmas kaitselüliti kerele märgitud kaitselülitite omadusi.

    Vooluahela tehnilised andmed - tähis

    Me vajame masinat, elektrienergia tarbijat, et kaitsta kaablit, mis läheb pistikupesasse, valgustitesse ja üldiselt igasse elektriseadmesse. See on vajalik selleks, et tarbijad ei kaablite ülekuumenemist ega põletaks isolatsiooni, ülekoormates seda hulga võimsate seadmetega, mille südamiku ristlõige on liiga väike. Või sisselülitades, oletades, et tegemist on vigase seadmega, ei suutnud me kaabli südamike sulatada suurel lühisevoolul. Kui vooluhulk ületab lubatava kiiruse, mis võib vedada juhtmeid ja kaabli isolatsiooni, peaks seade võrgu automaatselt vallanduma.

    Selleks, et saaksime valida õige masina, kirjutab tootja keha kaitselülitite peamised omadused. Koduses masinas on alati kaks kaitsereleed - termiline kui ülekoormuskaitse ja elektromagnetiline lühisekaitse. Need releed ja masin ise on üldiselt eri omadused ja mõned neist on kirjutatud masina kehale, teised aga peavad tootjatelt ja tabelitest kaugemale vaatama.

    Upstairs on tavaliselt näidatud ettevõtte tootjaks - IEK, Schneider electric, Legrand jms. Alljärgnevalt on kirjutatud automaadid, näiteks Schneider või S201 C60a või Ic60N, ABB jaoks SH203L. Erinevate ettevõtete seeriaid on palju. Seeria esimesed tähed ja numbrid ei ütle tarbijatele üldse midagi - lihtsalt vanemad nimetasid tehas tehasautomaati. Seeria viimased sümbolid tähendavad tavaliselt kaitselülitite pooluste arvu (st klemmide arvu sisend- ja väljundjuhtmete kindlaksmääramiseks, mis paiknevad lüliti üla- ja alaosas), nimivoolu jms. Tootmiskataloogides värvitud masinate seerianumbrid, mille jaoks on mugav paigutada iga seadme jaoks vajalikke seadmeid.

    Pingevaba kaitselüliti

    Seeria kõrval on üksteise kõrval ladina täht ja number. Oletame, et C25, B10 või D32. Number näitab kaitselüliti nimivoolu (In). See tähendab, et see on praeguse tugevuse suurim väärtus, mis põhimõtteliselt võib normaalsete tingimuste korral automaatselt voolata lõputult. Tavalised tingimused on umbes 30 ° C, st elektriplaatide kitsas ruumis ruumi temperatuur pluss automaadid soojendavad üksteist. Kui temperatuur väheneb, on masin võimeline taluma rohkem voolu, kuna see jahutab paremini ja tõuseb, siis lülitatakse see vastavalt voolule alla nimivoolu. Samuti arvestatakse tootjate tabelites nimivoolu suurust mõjutavate tegurite hulgas ka müra taset kõrgemal, voolu sagedust ja seadmete arvu kommunikatsiooniboksis.

    Masina elektromagnetilise ja termilise vooluahela ajaomadused

    Märgistuses olev ladina täht tähistab elektromagnetilise väljalülitusseadme (eelnimetatud lühisekaitse kaitselüliti) ajavoolu tunnusjoont ja termilise väljalülitusseadet (bimetallplaat, mis vabastab kontakti ülekoormuse ajal), kui kaua ja millises voolusisendis koormus lahutatakse pingest. On alljärgnevaid kiri - A; B; C; D; L; U; K; Z. Need tähistavad automaatse väljalülitamise aega lühise või ülekuumenemise korral sõltuvalt nimivoolu suurusest. Igapäevaelus kasutatakse peamiselt B-d; C; D. Neid käsitletakse käesoleval juhul.

    Niisiis katkestavad B automaatsed omadused koormuse lühikese vooluvõrguga, mis ületab nominaalset väärtust 3 (mõne aja jooksul ≥ 0,1 sekundit) kuni 5 korda (vähem kui 0,1 sekundit) ja seda kasutatakse elektrilülitustena, kui see on sisse lülitatud, ei ole voolu järsk tõus hõõglambid, kümme.

    Mõnevõrra vähem on B-tüüpi automaatseid masinaid ja veelgi sagedamini D-omadusi, mis katkestavad koormust, kui nominaalväärtust ületatakse 10 (≥ 0,1 sekundit) -20 korda ( <0,1 секунды), что незаменимо для защиты электродвигателей, имеющих большой пусковой ток.

    Sellest järeldub, et elektromagnetilise lühisega relee töötab automaattil, millel on kirjutatud C25, rohkem kui 0,1 sekundiga 25 ± 5 = 125 amprini voolutugevuses ja see töötab 25 x 10 = 250 amprites 0,1 sekundi jooksul või isegi kiiremini. Ja öeldes, B25 lülitub praegusesse piiresse 75-125 amprit.

    Voolukatkestite B termilise vabastamise aegumissignaalid; C; D on samad. Ülekoormuse režiimi viivitus on 1.13 In (reageerimisaeg on tund või pikem) võrra ja tavapärase voolutugevusega 1,45 In (vastamisaeg on vähem kui tund).

    See tähendab, et C16 automaatlüliti, kui võrk on ülekoormatud 18.08 amprini (16 * 1.13 = 18.08), ei lülitu välja tund aega või enam. Kui jõuab 23,2 A ülekoormuseni (16 * 1,45 = 23,2), lülitub termiline vool välja vähem kui tund. Suureneva ülekoormuse korral väheneb termilise relee reaktsiooniaeg pidevalt. Kui jõuame nimiväärtuseni üle 5 korra (signaali C automaatseadme puhul), lülitatakse koormus elektromagnetilise relee välja lülitamiseks. Punktis B elektromagnetilise vabanemise korral toimub režiim, mis on suurem kui nimiväärtus 3 korda ja D puhul 10 korda.

    Vooluahela läbilaskevõime

    Vooluahela spetsifikatsioonid

    Ristkülikukujulisest raamist põhja all on automaadi ümberlülitusvõimsuse tähistus, st selline praegune väärtus, mille korral lüliti võib lühiajalise lülituse ajal välja lülitada ja samal ajal jääda elule ja tervisele. Tavaliselt on need numbrid 3000, 4500, 6000, 10000 amprits ja nii edasi. Kellel 3000 aari pole keegi automaatidest vabastamist, nii et selle nimetusega saab ainult midagi vananenud. Masinad 4500 amprini - see on tavaline leibkonna tase. 6000 amprites alustavad väikeste tootmisrajatiste kaitselülitid jms. Kuid igapäevaelus saate paigaldada masinaid, millel on maksimaalne lülitusvõimsus ja 10 000 amprit. Puderit ei saa õliga rikkuda. Peaasi, et kaitselülitite muud omadused sobivad iga juhtumi puhul.

    Breiku praeguse piirklass

    Ristküliku alla on tõmmatud väike ruudukujuline raamistik numbritega 2 või 3, tähistades piirmäära vahetamise võimsust - see on praeguse piirangu klassi tähis. Praeguse piiri tunnus näitab, kui kiirelt elektri kaar kustub, kui kontaktid avanevad lühise ajal. Praeguse limiidi on kolm liiki. Kõrgeim 3. klass, kus kaar väljasuremine toimub 3-6 millisekundi jooksul (0,003-0,006 sekundit), 2. klass 10 millisekundi jooksul (0,01 sekundit) ning 1. klassi jaoks ei ole kehtestatud piiranguid ja neid ei rakendata kehale, on selge, et tühjendamine kestab üle 10 millisekundi. Praeguse piirklassi kohta üksikasjalikumalt.

    Võite lugeda postitusi sarnaste teemade pealkirja all - Automatiseerimine ja kaitse

    Circuit Breaker Kategooriad: A, B, C ja D

    Kaitselülitid on seadmed, mis vastutavad elektrivoolu kaitsmise eest suure vooluga kokkupuutest põhjustatud kahjustuste eest. Elektronide liiga tugev vool võib kahjustada kodumasinaid, samuti põhjustada kaabli ülekuumenemist järgneva tagasivoolu ja süttimisega. Kui liin ei ole aja jooksul pingestatud, võib see põhjustada tulekahju. Seepärast on elektripaigaldiseeskirjade (elektripaigaldustingimuste reeglid) nõuete kohaselt keelatud võrgu kasutamine, milles elektrikaitselülitid pole paigaldatud. AB-l on mitu parameetrit, millest üks on automaatse kaitselüliti ajavool. Selles artiklis selgitame A, B, C ja D kategooria kaitselülitite erinevust, mille kaitsmiseks kasutame neid võrke.

    Võrgu kaitseseadmete tunnused

    Ükskõik mis klassi kaitselüliti kuulub, on selle põhiülesanne alati sama - kiiresti tuvastada ülemäärase voolu välimus ja võrgu välja lülitada, enne kui kaabel ja liiniga ühendatud seadmed on kahjustatud.

    Vooluhulgad, mis võivad võrgustikku olla ohtlikud, on jagatud kahte tüüpi:

    • Ülekoormuse voolud Nende välimus esineb enamasti tänu seadmete võrgu lisamisele, mille koguvõimsus ületab selle võimsuse, mille joon suudab taluda. Veel üks ülekoormuse põhjus on ühe või mitme seadme rike.
    • Lühisega põhjustatud ülekoormus. Lüli tekib, kui faas ja neutraaljuhid on omavahel ühendatud. Tavalises olekus on need koormusse eraldi ühendatud.

    Vooluahela seade ja tööpõhimõte - videos:

    Ülekoormus

    Nende suurus kõige sagedamini ületab automaatselt nominaalset väärtust, nii et sellise elektrivoolu läbimine mööda ringlussüsteemi, kui see ei kao liiga kaua, ei kahjusta liini. Sellega seoses ei ole antud juhul vajalik hetkeline pingestuse väljalülitamine, seepärast jõuab sageli sageli automaatselt elektrivool. Iga AB on kavandatud teatud elektrivoolu ületamiseks, milles see käivitub.

    Kaitselüliti reageerimisaeg sõltub ülekoormuse suurusest: mõne normaali ületavusega võib kuluda tund või rohkem ja märkimisväärse ühe sekundi jooksul.

    Võimsa koormuse mõjul vooluvuse katkestamiseks vastab soojuspaisumine, mis põhineb bimetallplaadil.

    Seda elementi kuumutatakse võimsa voolu mõjul, see muutub plastiks, paindub ja põhjustab automaatse käivitumise.

    Lühis voolud

    Lühisülekandest põhjustatud elektronide voog ületab oluliselt kaitsevahendi väärtust, nii et viimane kohe käivitub, lülitades voolu välja. Lühise ja viivitamatu reaktsiooni tuvastamiseks vastutab elektromagnetiline vabastamine, mis on südamikuga solenoid. Viimane ülekoormus mõjutab koheselt lülitit, põhjustades selle liikumist. See protsess võtab paar sekundit.

    Siiski on üks nüanss. Mõnikord võib ülekoormuse vool olla väga suur, kuid seda ei põhjusta lühis. Kuidas peaks aparatuur määrama nendevahelise erinevuse?

    Video automaatlülitite valikulisusest:

    Siinkohal jätkame sujuvalt põhiküsimusega, millele meie materjal on pühendatud. Nagu öeldud, on olemas mitmed AB klassid, mis erinevad ajahetkel iseloomuliku iseloomuga. Kõige tavalisemad neist, mida kasutatakse majapidamises elektrivõrkudes, on klasside B, C ja D seadmed. A-kategooria kaitselülitid on palju vähem levinud. Need on kõige tundlikumad ja neid kasutatakse täppisinstrumentide kaitsmiseks.

    Nende seas erinevad praegused hetkeseadised. Selle väärtuse määrab voolu läbilaskevõime korduvus automaadi nimiväärtusele.

    Kaitselülitite väljalülitusomadused

    Selle parameetriga määratud AB-klass on tähistatud ladina tähega ja kinnitatakse seadme kehasse nimivoolule vastava numbri ees.

    Vastavalt EMP kehtestatud klassifikatsioonile on kaitseautomaadid jagatud mitmesse kategooriasse.

    MA tüüpi masinad

    Selliste seadmete eripära on nendes termilise vabanemise puudumine. Selle klassi seadmed on paigaldatud elektrimootorite ja muude võimsate seadmete ühendussõlmesse.

    Ülekoormuskaitse niisugustes liinides pakub ülekoormuslülitust, kaitseb kaitselüliti ainult ülekoormuslülitustest põhjustatud kahjustusi.

    A-klassi seadmed

    Nagu öeldud, on A-tüüpi masinatel kõige suurem tundlikkus. Ajavoolu karakteristikutega seadmete soojuslik vabastamine aeglustab sagedamini jõudlusega AB-d 30% võrra.

    Elektromagnetiline väljalülituspähkel lülitab võrgu välja umbes 0,05 sekundi võrra, kui vooluahela elektrivool ületab nimiväärtust 100% võrra. Kui mingil põhjusel pärast elektrivoolu võimsuse kahekordistamist koefitsiendiga kaks ei saanud elektromagnetiline solenoid töötada, siis vabaneb bimetallieraldus võimsusest 20-30 sekundit.

    Liinide hulka kuuluvad ajaga hoiustamise tunnus A masinad, mille käigus isegi lühiajalised ülekoormused on vastuvõetamatud. Nende hulka kuuluvad ahelad, milles on pooljuhtide elemendid.

    B-klassi ohutusseadmed

    B-kategooria seadmetest on vähem tundlik kui A-tüüpi. Elektromagnetiline vabastus neis käivitub, kui nimivool on 200% kõrgem ja vastamisaeg on 0,015 sekundit. Bimetallplaadi töötamine rikkis koos iseloomuga B-ga sarnase AB-i nominaalväärtusega ületab 4-5 sekundit.

    Selle seadme seadmed on ette nähtud paigaldamiseks liinidele, mis sisaldavad pistikupesasid, valgustusseadmeid ja muid ahelasid, kus elektrivoolu alustades ei ole või on minimaalne väärtus.

    C-kategooria masinad

    Kodu võrkudes on kõige sagedasemad C-tüüpi seadmed. Nende ülekoormus on isegi kõrgem kui eelnevalt kirjeldatud. Selleks, et paigaldada elektromagnetiline väljalülitus solenoid, peab selline seade olema paigaldatud nii, et selle läbivate elektronide voog ületab nimiväärtust 5 korda. Termokaitsesüsteem katkestab 1,5 sekundi jooksul kaitseseadme väärtuse viiekordse ületava väärtuse.

    Nagu juba öeldud, on ajami kaitselülitite paigaldamine aega iseloomulik C tavaliselt leibkonna võrkudes. Nad teevad suurepärast tööd sisendseadmete rolli üleüldise võrgu kaitsmiseks, samas kui B-kategooria seadmed sobivad hästi üksikutele harudele, mille külge on ühendatud väljalaske- ja valgustusseadmed.

    See võimaldab jälgida kaitsemehhanismide selektiivsust (selektiivsus), ja ühe ahela lühise puudumine ei põhjusta kogu maja energiat.

    Circuit Breakers D-kategooria

    Neil seadmetel on suurim ülekoormus. Selles seadmes paigaldatud elektromagnetilise mähise käitamiseks on vaja kaitsta kaitselüliti elektrivoolu ületada vähemalt 10 korda.

    Sellisel juhul vabaneb termiline vabastamine 0,4 sek.

    D-tunnusega seadmeid kasutatakse sageli üldistes hoonete ja rajatiste võrgustikes, kus neil on turvavõrgu roll. Need käivituvad, kui lülituslülitid ei ole eraldi ruumis õigeaegselt katkestatud. Samuti on need paigaldatud vooluringidesse, kus on palju lähtevooge, mille külge näiteks elektrimootorid on ühendatud.

    Kategooria K ja Z ohutusseadmed

    Selliste tüüpide automaadid on palju vähem levinud kui eespool kirjeldatud. K-tüüpi seadmetel on elektromagnetilise väljalülitamise jaoks vajalike praeguste väärtuste suur erinevus. Vahelduvvooluahela korral peab see indikaator ületama nominaalsüsteemi 12 korda ja konstantseks - 18 võrra. Elektromagnetilise solenoidi töö ei toimu rohkem kui 0,02 sekundit. Sellises seadmes võib termilise vabanemise toimida siis, kui nimivool ületab ainult 5%.

    Need funktsioonid on tingitud K-tüüpi seadmete kasutamisest äärmiselt induktiivsete koormustega ahelates.

    Z-tüüpi seadmetel on ka elektromagnetilise väljalülitamise solenoidi erinevad väljalülitusvoolud, kuid levimine ei ole sama suur kui AV-kategooria K. Vooluahela vooluringil tuleb nende lahtiühendamiseks pidurdada kolmekordselt ja DC-võrkudes peab elektrivool olema 4,5 korda nominaalset.

    Z-iseloomulikke seadmeid kasutatakse ainult liinidel, kuhu on ühendatud elektroonilised seadmed.

    Ilmselgelt video kategooriate masinate kohta:

    Järeldus

    Käesolevas artiklis analüüsisime kaitseautomaatide ajapõhiseid omadusi, nende seadmete liigitamist vastavalt EMP-le, samuti arutasime, millised ahelad on paigaldatud eri kategooriate seadmetesse. Saadud teave aitab teil määrata, milliseid kaitseseadmeid tuleks võrgul kasutada, lähtudes sellest, millistesse seadmetesse see on ühendatud.

    Kaitselülitite praegused omadused

    Tere, kallid lehe lugejad http://elektrik-sam.info.

    Käesolevas artiklis käsitleme põhikaitselisi kaitselüliteid, mida peate teadma, et neid nende valimisel korralikult liikuda - see on kaitselülitite nimivool ja ajavooluomadused.

    Lubage mul teile meelde tuletada, et see väljaanne on lisatud mitmest artiklist ja videost elektrikaitseseadmetest kursusest Circuit Breakers, RCD-d, difavtomaty - üksikasjalik juhend.

    Kaitselüliti peamised omadused on näidatud tema juhtumil, kus kasutatakse ka tootemargi või kaubamärki ning kataloogi või seerianumbrit.

    Kaitselüliti tähtsaim omadus on nimivool. See on maksimaalne vool (amprites), mis voolab masinas läbi piiramatu aja ilma kaitsekontuuri lahti ühendamata. Kui vooluhulk ületab selle väärtuse, aktiveerib automaat automaat ja avab kaitstud ahel.

    Kaitselülitite nimivoolu väärtuste vahemik on standarditud ja on:

    6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100A.

    Seadme nimivoolu väärtus on näidatud amprites ja vastab ümbritsevale temperatuurile + 30˚С. Suureneva temperatuuri korral väheneb nimivoolu väärtus.

    Samuti on elektriplaatide automaadid paigaldatud mitmele üksteise järel üksteisele lähedale, see toob kaasa temperatuuri tõusu (automaadid "soojendavad" üksteist) ja nende poolt sisse lülitatud voolu väärtuse vähenemist.

    Mõned kaitselülitite tootjad määravad kataloogide korrektsioonitegurid, et võtta arvesse neid parameetreid.

    Üksikasjalikku teavet ümbritseva õhu temperatuuri ja paigaldatud kaitseseadmete arvu kohta leiate artiklist Miks lülitab kaitselüliti soojusenergia sisse.

    Mõnede tarbijate elektrivõrguga ühendamise hetkel tekivad ahelates lühiajalised külmikud, tolmuimejad, kompressorid jms käivitusvoolud, mis võivad masina nimivoolu mitu korda ületada. Kaabli jaoks pole selline lühiajaline tõusuvool ei ole kohutav.

    Seega, nii et masin ei lülitu välja iga kord väikese lühiajalise vooluahela suurenemisega, kasutatakse erinevaid ajavooluomadusi iseloomustavaid masinaid.

    Seega on järgmine peamine tunnus:

    Kaitselüliti ajavoolu iseloomustus on kaitstud vooluahela vallandumise aja sõltuvus selle läbi voolava voolu tugevusest. Vool on näidatud suhtena nimivoolule I / In, st mitu korda ületab kaitselüliti voolav vool selle kaitselüliti nimivoolu.

    Selle tunnusjoonte tähtsus seisneb selles, et sama nimiväärtusega automaadid lülitatakse välja erinevalt (sõltuvalt ajavoolu omadusest). See võimaldab vähendada valede häirete arvu, kasutades erinevate laadimisviiside jaoks erinevaid voolutugevusega voolukatkestid,

    Vaatleme aja-ajalooliste näitajate tüüpe:

    - Tüüpi A (2-3 nominaalset voolu väärtust) kasutatakse laialdaste juhtmete pikkusega ahelate kaitsmiseks ja pooljuhtseadiste kaitsmiseks.

    - Tüüpi B (nimivoolu 3-5 väärtused) kasutatakse ahelate kaitsmiseks väikese käivitusvoolukorduse väärtusega peamiselt aktiivse koormusega (hõõglambid, kütteseadmed, ahjud, üldvalgustusega valgustusseadmed). Näidatakse kasutamiseks korterites ja elamutes, kus kooremid on enamasti aktiivsed.

    - C-tüüpi (5-10 nominaalset voolutarbet) kasutatakse mõõdukate käivitusvooluga seadmete ahelate kaitsmiseks - konditsioneerid, külmikud, kodu- ja kontori pistikupesad, suurema käivitusvooluga gaaslahenduslambid.

    - D-tüüpi (nimivoolu väärtused 10-20) kasutatakse kõrge voolutugevusega elektriseadmete (kompressorid, tõstemehhanismid, pumbad, masinad) varustavate ahelate kaitsmiseks. Need on paigaldatud peamiselt tööstusruumidesse.

    - Tüüpi K (8-12 nimipinge väärtused) kasutatakse induktiivkoormusega ahelate kaitsmiseks.

    - Tüüpi Z (2,5-3,5 nimivoolu väärtused) kasutatakse ülekoormusega tundlikele elektroonikaseadmetele kaitsmiseks.

    Igapäevaelus kasutatakse kaitseümbriseid, millel on omadused B, C ja väga harva. Väga harva D. Tunnusjoon näidatakse automaatkorpuse korpuses ladina tähega enne nimipinge väärtust.

    Kaitselüliti tähis "C16" näitab, et sellel on hetkeline väljalülitumine C (st kui vool on 5-10 korda suurem kui nimivool) ja nimivool on 16 A.

    Kaitselüliti ajavool on tavaliselt graafikuna. Horisontaaltelg näitab nimivoolu mitmekordsust ja vertikaaltelg näitab automaatvastaja reaktsiooniaega.

    Graafiku suur hulk on tingitud voolukatkestite parameetrite erinevusest, mis sõltuvad nii välistest kui ka sisemistest temperatuuridest, sest kaitselülitit kuumutatakse selle kaudu läbivat voolutugevust, eriti avariiolukorras, ülekoormuse voolu või lühisevoolu (SC) abil.

    Graafik näitab, et kui väärtus I / I≤≤ 1, siis lülitatakse kaitselüliti väljalülitusaeg lõpmatuseni. Teisisõnu, kui voolutugevus läbi voolukatkesti on vooluvõrgust väiksem või sellega võrdne, ei lülitu kaitselüliti välja (välja lülitada).

    Graafik näitab ka seda, et mida suurem on I / In väärtus (st kui voolukiirgus läbi voolutugevuse ületab nimivõimsuse), seda kiiremini lülitatakse kaitselüliti.

    Kui voolab läbi automaatne kaitselüliti, mille väärtus on võrdne elektromagnetilise vabanemise tööpiirkonna alumise piiriga ("B", 5 "C" ja 10 "jaoks" D "jaoks), peaks see välja lülituma rohkem kui 0,1 sekundi jooksul.

    Kui vooluhulgad on võrdsed elektromagnetilise väljalülitusseadise tööpiirkonna ülemise piirväärtusega (5 jaoks "B", 10 "C" jaoks ja "D" jaoks 20 "), lülitab kaitselüliti välja vähem kui 0,1 s. Kui põhiseadme vool jääb hetkeliste väljalülitusvoolude vahemikku, lülitatakse kaitselüliti kas kerge viivituseta või ilma viivituseta (vähem kui 0,1 s).

    Järgmistes artiklites kaalume jätkuvalt kaitselülitite omadusi, nende arvutamise ja valimise meetodit ja strateegiat, nii et kui te ei soovi jätta vahele uusi huvitavaid materjale sellel teemal - tellige uudistesaiti, artikli allservas olevat liitumisvormi.

    Artikli kokkuvõttes on üksikasjalik ülevaade kaitselülitite reitingust ja praegustest omadustest:

    Circuit Breakers - spetsifikatsioonid

    Paradoksaalne asjaolu on see, et pärast seda, kui "sulavkaitsmed" lõpetasid elektrooniliste (elektriliste) seadmete kasutamise, mis põletas võrguparameetrite ebaharilike muutuste ajal, suurenes põletatud elektriseadmete arv märkimisväärselt, hoolimata sellest, et automaatne kaitselüliti on palju tundlikum, reageerivad kiiremini ja võivad vältida isegi lühisid.

    Küsi, mis on saak? Vastus on lihtne. Mugavus on kaitselüliti tööpõhimõte, mis võimaldab seda uuesti sisse lülitada. Vähesed võivad ohtu lihtsalt asendada kaitsmega, mõistmata seadme tõrke põhjuseid. Lõppude lõpuks peate otsima veel ühte, kui midagi läks valesti. Seega, kui kaitsmed põlesid, üritas omanik kõigepealt leida "põlemise" põhjuse, mitte varukadu või korgi. Automaatsed kaitsesüsteemid kõrvaldasid "varuosa" otsingu, võimaldades samal ajal omanikul katkestatud automaatse masina korduvalt lõpetada mitteoperatiivse seadme või isegi kogu elektrivõrgu lõpetamise. Siit on selline statistika. Vaatame välja, milline on kaitselüliti, "mida seda söötakse," ja samal ajal kuidas seda korralikult käsitseda.

    Kaitselülitite tööpõhimõtted

    Alustame elektrivõrgust, mida kaitseb kaitselüliti, mille omadused sõltuvad otseselt kaitstud võrgu sektsiooni parameetritest. Automaatmonaatori ülesandeks on jälgida antud vooluahela parameetreid ilma ülekoormata, katkestada viivitamatult sektsioon, kui juhtmed või lühis on ülekuumenenud, samuti kui vool ületab lubatavaid läviväärtusi. Seega on punkt, kus teie objekt on ühendatud elektrisüsteemiga, ja energiat tarbiv seade, on kaks peamist elementi. Esimene on kaitselüliti, mille omadused on ühendatud teise kaabli (juhtmega), täpsemalt juhtmete arvu ja selle kaabli ristlõikega. Siin on kaks lihtsat näidet:

    Koridoris on mitu lambipirnit koguvõimsusega 400 vatti ja põrandakütte maatüki võimsus 1500 vatti. Võrk on 220 volti, mis tähendab (Watts = Volts x Amperes), 1400 vatti ja 220 volti võrra võrdub 8,4 amprit. See tähendab, et selle piirkonna kaitsmiseks on piisav 8,4-meetrise vooluga masin ja me seadisime 10 A.

    Köögis on 10 seadet võimsusega 1200 vatti ja kokku 12 000 vatti. Sellest tulenevalt jagame selle jaotise osas 12 000 220, vaja on 54 amprit, kuid me oleme piiranud 25 amprise standardautomaatti.

    Nende näidete kaitselülitite tööpõhimõtte mõistmine on piisav.

    Koridoris lülitatakse seade kõige tõenäolisemalt välja ainult siis, kui ahelas esineb lühis. Surve tõenäosus ülekoormuse tõttu, selle võrgu ülekuumenemine on tühine (samade praeguste parameetritega saab väljastpoolt). Selles piirkonnas ei ole ka spetsiaalseid nõudeid juhtmete ristlõikele. Tähelepanu! Selles koridoris, mida näidetena ei näidata, pole teiste seadmete ühendamiseks pistikupesi!

    Kuid köögis lisab üks pärast teistest seadmetest järgmist olukorda:
    Iga komplektis olev seade (+1200 vatti) suurendab koormat, mis tähendab selle voolu tugevust selles vooluringis. Lisatud 5. seade tõstab voolu järgmisele: 5 * 1200/220 = 27,3 A.

    Automaatne "teab", et voolu selles piirkonnas ei tohi ületada 25 amprit. Seepärast viienda seadme lisamine toob köögi võrgust lahti. (Täpsustage, kui automaatne omadus on 1 kuni 1, nagu allpool kirjeldatud).

    Niisiis, automaat, mis tuvastas praeguse parameetri ülejäägi, lülitas võrgupartii välja. Mis juhtub, kui köögis tekib lühis? Sulgemine toob kaasa koormuse järsu suurenemise ja hetkelise voolu suurenemise. Sellisel juhul muutuvad juhtmed kütteelementideks, kuumutades kõrgel temperatuuril. Soojenemine toimub samaaegselt kogu ahelaga, mille kaudu voolab vool. Sellisel juhul võib vool kohe suurendada väga suured väärtused. See võib põhjustada kokkupuutel põletusi ja tulekahju, kui kaitselüliti väljalülitamise aeg pole õige.

    Ülaltoodut silmas pidades saate hõlpsasti aru saada masinate muudest omadustest, nende "lugemisest", samuti kaitselülitite tööpõhimõtetest, sealhulgas tööstuslike rakenduste jaoks.

    Automaatmaade seade, märgistus ja tehnilised omadused

    Kaitsevahendi funktsioonidest läheb selle seade voolab. See on lüliti, mis tagab elektrivoolu avamise üleliigse voolu või kütmise tõttu. See tähendab, et masinas on kaks vooluahelat, mis on suunatud ahela garanteeritud avanemisele. Kuumutamisel muudab bimetallplaat mahtu, mis tagab kontaktide füüsilise eraldamise (termiline vabastamine). Elektromagnetiline vabastus koos praeguste parameetrite vastuvõetamatute muutustega loob ruumi seespool, kus liikuv jälgija asub, samuti avab ahela. Lülitusseadmete sisselülitamisel ja väljalülitamisel kontaktide kaarel kustub arstekamber. Erinevat tüüpi automaatide jaoks on muid disainifunktsioone, kuid need on põhilised.

    Automatiseerimise klassifikatsioon

    Pooluste arv: ühe- ja kahepooluselised lülitid, millel on 1 või 2 kaitstud poolust, 3-pooluselised lülitid koos 3 kaitstud poolusega, neljapostilise lülitiga 3 või 4 kaitstud poolusega.

    Kaitse välise mõjuga: suletud või avatud katse.

    Vastavalt selle paigaldamise viisile: seinatüüp, süvistatav tüüp, paigaldus jaotuskappides (kaasa arvatud paigaldamine din-rööbastele), kombineeritud.

    Vastavalt selle ühendamise meetodile: mehaanilise kinnitusega või ilma.

    Hetkevaba voolutugevus, mida tähistatakse tüüpidega B, C, D.

    Automaatmärgistuse tähistamine peegeldab konkreetse seadme omadusi, see on rangelt standarditud, kavandatud fotol on see selgelt nähtav:

    Tehnilised omadused (kajastub märgistuses) vastavad järgmistele väärtustele:

    Nimivool (A), väärtus (märgitud märgistuses) vahemikus: 6,3, 10, 16, 25, 32, 40, 63, 100, 160 A - elamute jaoks 1000, 2600 A - tööstuslikuks otstarbeks.

    Tööpinge 220 V (220, 230, 250) või 380 V (380 400).

    Hertsi sagedus on 50 või 60.

    Väljalülituskõverate omadused sõltuvalt vooluahela koormusest: B - madala lühisevoolu (kütteseadmed) võrgud, C - kõrgevoolude võrgud (kõige levinumad), D - kõrgete käivitusvooludega (masinad, elektrimootorid, CA jne)..) Teised klassid on: A - suure vastupidavusega ja kaotusega võrgud, Z-võrgud tundlike elektrooniliste seadmete ja vähese voolutarbega seadmetega, K-spetsiifiline rakendus suure voolutugevusega võrkude jaoks. Iga klass peegeldab ahela kaitsmise õigsust ilma tarbetute toiminguteta ja valede katkestusteta. Kui lülitate automaatse C-ga korterisse võimsa elektrimootori või keevitusseadme, lülitub automaatne lülitus peaaegu kindlasti lahti. Tõsiasi on see, et suure võimsusega elektriseadmete lähtevoolud võivad olla mitu korda kõrgemad kui nominaalväärtused. Sellepärast automaat D, mis "realiseerib", et masin on sisse lülitatud, ei lülita elektrit välja automaatselt C-st veidi enam kauemaks, kui masin läheb arvestuslikule nominaalsele töörežiimile, pärast seda jõuavad võrgu voolud õigetesse väärtustesse.

    Lühendatud lühisvool (PKS) määrab voolu, mille korral masin lülitub välja tõrgeteta. Näiteks on standardse kodumajapidamise automaatne kolmeosaline voolukatkesti PKS 4000, kuid Vene tehases töötavad voolukatkestid, isegi need, mida kasutatakse igapäevaelus, on PKS 6000 või kõrgemad, hoolimata sellest, et see on tööstusliku rakendusala. Mida kõrgem on PKS väärtus, seda rohkem garanteerib, et masin lülitub välja ka võrgu kõige tõsisemate õnnetusjuhtumite korral.

    Hetki-aja iseloomustus, mis peegeldab aja vältel sõltuvalt praegusest. Mida vähem aega, seda usaldusväärsem on võrk ja see on kallim masin. See omadus on kombineeritud (ühes tsoonis lülitatakse soojusenergia, teises elektromagnetiliste releaserite puhul). Andmed selle kohta leiate viitedokumentidest. Tarbijale on oluline mõista, et automaadid võivad olla aeglane, keskmise kiirusega ja kiire toimega. Lisaks ajajärgule peegeldab see sama omadus kaitseseadme piiravat liigset voolu (1 kuni 14 ühikut nimiväärtusest). See graafik näitab, kuidas kaitselüliti reaktsiooniaeg muutub suureneva vooluga:

    Kogunemis-füüsikalised omadused, samuti väliskeskkonnast pärit kaitseklass, kajastuvad toodete passides, kuid neid saab näha palja silmaga.

    Kuidas praktikas kasutada masina nõuetekohase valiku tunnuseid?

    Iga kaitselüliti, mille omadused on meile ligilähedaselt selged, peavad kõigepealt vastama selle põhieesmärgile - võrgu sektsiooni kaitsele. Samal ajal peab see tagama, et ühelt poolt ei tohiks ületamatuid katkestusi teha ning ei võimalda võrgu sektsiooni sees olevat kaitsetõrjet, mis võib põhjustada seadme (seadmete) rikke.

    Alustame teie elektrivõrgu hinnanguga - juhtmete ligikaudne pikkus, juhtmete arv ja ristlõige, maanduskeerme olemasolu, isolatsiooni kvaliteet ja kasutatavate elektriseadmete arv (sagedus ja võimsus).

    Mida kauem on kaablid, seda suurem on nende vastupanu, vaid tavaline korter, kus südamikku kasutatakse 1,5 mm kaugusel. hästi sobib kõige tavalisem automaat klass C 220V. Postide arv annab meile võrgu kilp, paigaldusfunktsioonid ja funktsioonid. Soovitav on konsulteerida nendega, kes installeerimist teevad! Märgistuses oleva voolu tugevus (näiteks C16) määratakse kindlaks kaasas olevate seadmete koormuse järgi, võttes künnise väärtuse kahekordse reitinguna, et välistada valesid katkestusi. Oletame, et kõigi seadmete samaaegse sisselülitamise vool (arvutus vt ülal) on 35 amprit, arvestades, et selline olukord on ebanormaalne, piisab automaatse C25 kasutamisest. Masin ei sulgeda, kuid täiendav "avarii" koormus suureneb kui õigeaegne väljalülitus.

    Tootja valimine

    Olles otsustanud selle pinge, voolu ja töökiiruse, mida tegelikult piirab sama klassi automaatide hind, valime tootja. Vaatamata ühisele arvamusele, on vene automaatkaitselülitid väga usaldusväärsed seadmed, mis on valmistatud vastavalt külalistel (mis on tugevad kui tootjate TU) ja on odavamad. Igal juhul on kõige õigem, kas ühe tootja kogu paneeli varustus (mitte ainult masinad, vaid ka rööpad, kilp ja lisaseadmed), mis mitte ainult ei võimalda paigaldamist lihtsamaks (täieliku ühilduvuse tõttu), vaid aitab säästa ka aega, ostes kõike üks koht.

    Kui on koostatud sissejuhatava osa spetsifikatsioon (kilp, automaatmasinad jne), soovitame anda ekspertidele hindamiseks. Kui määrate selle töö spetsialistidele, kontrollige oma soovituste abil, kuidas teie nägemuse valik on õige. Kui teil on küsimusi, ärge rahul ennast "nad teavad paremini" - kindlasti saate teada, miks seda võimalust pakutakse.

    Inimkaitse on esmatähtis!

    Kokkuvõtteks ütleme veel teise seadme kohta, mis peaks muutuma teie kilbi peakaitsevahendiks. Artiklis käsitleti võrgu ja seadme kaitse aspekte, nüüd räägime, kuidas kaitsta inimest. Selleks kasutage nn automaatset diferentsiaalvoolu lülitit, mille eesmärk lisaks jälgimise vooludele on lekete ja võrgu ebanormaalsete muutuste jälgimine. Lihtsamalt öeldes tunnistab selline automaatne tüüp, et võrgu omadustes esineb lubamatuid muutusi, mis kuuluvad kategooriasse "isolatsioonikahjustus", "inimeste kokkupuude otsejuhtmetega" jne.

    Selline avastamine põhjustab võrgu sektsiooni hetkeseisu. Mõnikord nimetatakse diferentsiaalvoolu kaitselülitid RCDd (jääkvooluadapter), MDZ (diferentsiaalkaitse moodul). Neid saab kasutada koos teiste masinatega. Selle masina peamine erinevus seisneb selles, et see töötab inimese kaitsmiseks elektrilöögi eest. Kõige olulisemad on sellised seadmed vannitubade ja vannide (eelistatavalt maksimaalse tundlikkusega) ja köökide ühendamiseks. Kuid tänapäeval eelistavad paljud selliseid lülitiid korteri kõikides võrgu osades asetada.

    Loodame, et see artikkel on teile RCD valimisel kasulik ja seetõttu on teie elektrivõrgust usaldusväärselt kaitstud elektriseadmed.