Vooluahela spetsifikatsioonid

  • Tööriist

Kaitselüliti või lihtsalt lihtsalt kaitselüliti on peaaegu kõigile tuttav elektriseade. Kõik teavad, et masin lülitab võrgu välja, kui sellega on probleeme. Kui te ei ole tark, siis on need probleemid liiga elektrivooluga. Liigne elektriline vool on ohtlik, kui kõik juhtmed ja kodumasinad ei tööta, võib-olla ülekuumenemise, tulekahju ja seega ka tulekahju. Seepärast on kaitse kõrge voolu vastu elektriahelate klassikaline ja see eksisteeris elektrifitseerimise ajal.

Maksimaalse voolukaitse seadmetel on kaks olulist ülesannet:

1) õigel ajal ja täpselt ära tunda liiga kõrge voolu;

2) katkestage ahel enne, kui see vool võib põhjustada mingeid kahjustusi.

Sellisel juhul saab suure voolu jagada kahte kategooriasse:

1) võrgu ülekoormuse tagajärjel tekkinud suured voolud (näiteks suure hulga kodumasinate lülitamine või mõne neist rike);

2) lühisev ülekoormus, kui null- ja faasijuhtmed on otseselt ühendatud, mööda koormust.

Võib-olla võib see mõnele inimestele kummaline olla, kuid ekstreemse lühisvooluga on see kõik väga lihtne. Kaasaegsed elektromagnetilised statiivid hõlpsasti ja täiesti õigesti lühisid ning koormus lahutavad sekundi murdosa, vältides juhtmete ja seadmete vähimatki kahjustamist.

Ülekoormuse vooludega on veelgi raskem. See vool ei erine oluliselt nimiväärtusest, võib mõne aja pärast voolata mööda vooluringi ilma igasuguste tagajärgedeta. Seetõttu ei ole niisugust praegust koheselt vaja välja lülitada, eriti kuna see oleks võinud tunduda väga lühidalt. Olukorda raskendab asjaolu, et igal võrgul on oma piiratud ülekoormusvool. Ja mitte ühtki.

Vooluahela seade

On mitmeid vooge, millest igaühe jaoks on teoreetiliselt võimalik kindlaks määrata maksimaalne võrgu seiskamisaeg, ulatudes mõnest sekundist kümnete minutiteni. Kuid ka valepositiivid tuleb ka välistada: kui võrgu vool on kahjutu, siis ei tohiks sulgemine minna ega tunde - mitte kunagi üldse.

Selgub, et ülekoormuse kaitse seadeväärtust tuleks kohandada konkreetse koormusega, muuta selle vahemikku. Ja muidugi tuleb enne ülekoormuskaitse seadme paigaldamist laadida ja kontrollida.

Seega on tänapäevases "automaatikas" olemas kolme tüüpi väljalasked: mehaaniline - käsitsi sisselülitamine ja välja lülitamine, elektromagnetiline (solenoid) - lühisevoolu väljalülitamine ja kõige raskem - soojuskaitse, et kaitsta ülekoormust. See on kaitselülitile iseloomulik soojus- ja elektromagnetiline väljalülitusseade, mis tähistab seadme praeguse reitingu tähistava numbri ees olevat ladina tähte korpusel.

See omadus tähendab:

a) ülekoormuskaitse tööpiirkond on sisseehitatud bimetallplaadi parameetrite tõttu, ahela painutamine ja purunemine, kui selle kaudu voolab suur elektrivool. Täppis reguleerimine saavutatakse selle plaadi vajutamisega kruvi reguleerimisel;

b) sisseehitatud solenoidi parameetrite tõttu maksimaalse voolukaitse tööpiirkond.

Kaitselüliti ajavool

Allpool loetleme modulaarsete kaitselülitite omadused, räägime sellest, kuidas need üksteisest erinevad ja millised on need masinad. Kõik omadused sõltuvad koormusvoolust ja selle voolu väljalülitusajast.

1) Iseloomulik MA - termiline vabastamine puudub. Tegelikult pole see tõesti alati vajalik. Näiteks elektrimootorite kaitse toimub tihti maksimaalse voolu releedega ja sellisel juhul on automaatne ainult lühisevoolu kaitsmiseks vajalik.

2) Iseloomulik A. Selle omaduse automaatne soojuslik vabastamine võib käivituda nimivoolu juures 1,3. Samal ajal jääb aega umbes tund. Vooluhulga korral, mis ületab nominaalset kahet, saab elektromagnetiline vabastus käivituda umbes 0,05 sekundi jooksul. Aga kui solenoid ei tööta topeltvoolu ülemises osas, on termiline vabastamine endiselt "mängul", lahutades koormuse umbes 20-30 sekundit. Kui voolutugevus ületab kolme korda, on elektromagnetiline vabastus garanteeritud töötama sajandikku sekundis.

Kaitselülitite omadused A paigaldatakse nendesse ahelatesse, kus tavapärases töörežiimis ei esine mööduvat ülekoormust. Näiteks on ahel, mis sisaldab pooljuhteelementidega seadmeid, mis võivad väikese liigse vooluga rikkuda.

3) Iseloomulik B. Kõnealuste automaatide iseloomulikkus erineb iseloomulust A selle poolest, et elektromagnetiline vabastamine võib toimida ainult siis, kui voolutugevus ületab mitte kahe, vaid kolme või enama korra. Solenoidi reageerimisaeg on ainult 0,015 sekundit. Automaatploki B kolmekordse ülekoormuse termiline vabastamine töötab 4-5 sekundi pärast. Automaatne garanteeritud töö toimub vahelduvvoolu viiskordsel ülekoormusel ja koormusel, mis ületab nominaalset 7,5 korda DC-ahelates.

Kaitselülitite omadusi B kasutatakse valgustusvõrkudes ning ka muudes võrkudes, kus voolu algus suureneb või väheneb või puudub üldse.

4) Iseloomulik C. See on kõige enam elektrikutele kõige kuulsam omadus. Automaatika C eristatakse veelgi suurema ülekoormusega võrreldes automaatide B ja A korral. Seega on iseloomuliku C automaatväljundi minimaalne vastusvool viis korda nominaalset voolu. Samal ajal vallandab termiline vabastus 1,5 sekundi pärast ja elektromagnetilise vabanemise tagatud vabastamine tekib vahelduvvoolu kümnekordsel ülekoormusel ja 15-kordse ülekoormuse korral alalisvoolu ahelates.

Kaitselülitid C on soovitatavad paigaldamiseks segakoormusega võrkudesse, eeldades, et mõõdukad pingevoolud, mille tõttu leibkondi sisaldavad täpselt seda tüüpi automaatlülitusseadet.

Vooluahela B, C ja D spetsifikatsioonid

5) Iseloomulik D - omab väga suurt ülekoormust. Selle automaadi elektromagnetilise solenoidi minimaalne käivitusvool on kümme nominaalset voolu ja termiline vabastamine saab käivitada 0,4 sekundit. Garanteeritud operatsioon on varustatud kahekümne ülekoormusega.

Kaitselülitite omadused D on ette nähtud peamiselt suure jõuülekandega elektrimootorite ühendamiseks.

6) Tunnust K iseloomustab suur erinevus maksimaalse solenoidse käivitumiskiiruse vahel vahelduvvoolu ja alalisvoolu ahelates. Minimaalne ülekoormusvool, mille korral elektromagnetväljund saab nende masinate käivitamiseks käivitada, on kaheksa nimivoolu ja sama kaitse tagatud vastamisvool on 12 vahelduvvoolu ahela nimivoolu ja 18 alalisvoolu voolu nominaalvoolu. Elektromagnetilise vabastamise reaktsiooniaeg on kuni 0,02 sekundit. Automaatploki K termiline vabastamine võib käivituda vooluga, mis ületab hinnatud väärtust vaid 1,05 korda.

Nende karakteristikute K omaduste tõttu kasutatakse neid automaatrežiime ainult induktiivse koormuse ühendamiseks.

7) Characteristic Z omab ka erinevusi elektromagnetilise vabastamise tagatud töö vooludes vahelduvvoolu ja alalisvoolu ahelates. Nende masinate minimaalne võimalik solenoid-väljalülitusvool on kaks nominaalset ja elektromagnetilise vabastamise garanteeritud väljalülitusvool on AC-ahelate kolm nominaalset voolu ja alalisvooluahela 4,5 nominaalset voolu. Automaat-Z soojuslik vabastamine, nagu automaat K, võib käivituda 1,05-ga nimiväärtusest.

Z masinaid kasutatakse ainult elektrooniliste seadmete ühendamiseks.

Kaitselüliti valik: elektrimasinate tüübid ja omadused

Kindlasti paljud meist mõtlesid, miks lülitid nihkuvad elektrilöögi ajal aegunud kaitsmed nii kiiresti? Nende kasutuselevõtu tegevus on õigustatud mitmete väga veenvate argumentidega.

Masin lülitab peaaegu koheselt talle usaldatud liini, mis välistab juhtmestiku ja võrgutoitega varustuse kahjustumise. Pärast väljalülitamist saab filtri kohe taaskäivitada, ilma ohutusseadist välja vahetamata. Lisaks sellele on võimalik osta sellist kaitset, mis ideaaljuhul vastab teatud tüüpi elektriseadmete ajaloolistele andmetele.

Selleks, et lülitada kaitselüliti õigesti välja, on vaja mõista seadmete liigitust. Te peate teadma, millised parameetrid peaksid pöörama suurt tähelepanu. Selle väärtusliku teabe leiate meie poolt välja pakutud artiklist.

Vooluahela klassifikatsioon

Kaitselülitid valitakse tavaliselt nelja peamise parameetri järgi: nimiväljundvõimsus, pooluste arv, ajavoolu tunnus, nimivoolu vool.

Parameeter # 1. Hindatud purunemisvõime

See tunnus näitab lubatavat lühisvoolu (SC), mille juures lüliti töötab, ja lülitades ahela välja, vabastage juhtmed ja sellega ühendatud seadmed. Selle parameetri järgi jagatakse kolme tüüpi automaadid: 4,5 kA, 6 kA, 10 kA.

  1. Automaatne 4,5 kA (4500 A) kasutatakse erasektori elamute energiavõrkude kahjustuste välistamiseks. Aluskaabli alalisvoolu juhtmestiku vastupanu on ligikaudu 0,05 Ohm, mis annab praeguse piirangu ligikaudu 500 A.
  2. 6 kA (6000 A) seadmeid kasutatakse elamuehituse kaitsmiseks lühisest, avalikes kohtades, kus liinide vastupidavus võib ulatuda 0,04 oomi, mis suurendab lühise kuni 5,5 kA.
  3. Lülitid 10 kA (10 000 A) jaoks kasutatakse elektriseadmete kaitsmiseks tööstuslikuks kasutamiseks. Lähtematerjali lähedal asuvas lühis võib esineda kuni 10 000 A voolu.

Enne kui valida kaitselüliti optimaalne modifikatsioon, on oluline mõista, kas lühisekaitse vool on võimalik üle 4,5 kA või 6 kA?

Seadme väljalülitamine toimub seadistatud lühise ajal. Kõige sagedamini kasutatakse 6000A kaitselülitid kodustele vajadustele. Mudeleid 4500A ei kasutata tänapäevaste elektrivõrkude kaitsmiseks ja mõnedes riikides on nende kasutamiseks keelatud.

Kaitselüliti töö on kaitsta juhtmestikku (mitte seadmeid ja kasutajaid) lühistest ja isolatsiooni sulatamisest, kui vool ületab nimiväärtusi.

Parameeter # 2. Postide arv

See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).

See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).

Ühepoolusega masinate omadused

Unipolaarse tüübi lüliti on automaatmasina kõige lihtsam muutmine. See on mõeldud üksikute ahelate, samuti ühefaasilise kahefaasilise kolmefaasilise juhtme, kaitsmiseks. Kaitselüliti konstruktsiooniga on võimalik ühendada kaks juhtmest - toitejuhe ja väljundvoolukanal.

Selle seadme klassi funktsioonid hõlmavad ainult traadi kaitset tulekahju eest. Juhtme neutraal asetseb nullibussi juures, möörates seega kaitselülitit, ja maandusjuhe on maasse eraldi ühendatud.

Üheposalaline automaat ei täida sisendfunktsiooni, sest kui see on sunnitud lahti ühendama, on faasiliin katkenud ja neutraal on ühendatud pingeallikaga, mis ei anna 100% garantii kaitsele.

Bipolaarsete lülitite omadused

Kui pinge võrgukaablit tuleb täielikult lahti ühendada, kasutage kahesuunalist masinat. Seda kasutatakse sisendina, kui lühise või võrgu rikete ajal on kõik elektrijuhtmed üheaegselt pingestatud. See võimaldab teil õigeaegselt tööd teha, ketid moderniseerida, on täiesti ohutu.

Kandke bipolaarseid masinaid juhtudel, kui ühefaasilise elektriseadme jaoks on vaja eraldi lülitit, näiteks veesoojendit, boilerit, tööpinki.

Ühendage masin kaitstud seadmega, kasutades 4 juhtmest, millest kaks on toitejuhtmed (üks neist on otse võrguga ühendatud ja teine ​​annab toitejuhtme jumperiga) ja kaks väljundvoolu, mis vajavad kaitset, ja need võivad olla 1-, 2-, 3-juhtmeline.

Pingelülitite kolmepunktilise modifikatsiooniga

Kolmefaasilise 3-või 4-juhtmeta võrgu kaitsmiseks kolmepoolsete masinate abil. Need sobivad ühendamiseks vastavalt tärnitüübile (keskkaabel jääb kaitseta ja faasijuhtmed on ühendatud postidega) või kolmnurk (keskjuhtmest puudu).

Õnnetusjuhtumi korral mõnel joonel muudavad teised kaks ise.

Kolmeosaline kaitselüliti on sisendiks ja ühine kõigi kolmefaasiliste koormuste puhul. Elektrilöögi saamiseks kasutatakse sageli tööstuslikku modifikatsiooni.

Mudelile on ühendatud kuni 6 juhtmest, millest 3 on kolmefaasilise toitevõrgu faasijuhtmega. Ülejäänud kolm on kaitstud. Need esindavad kolme ühefaasilist või ühte kolmefaasilist juhtmestikku.

Neljafaasiline automaatne kasutamine

Selleks, et kaitsta kolme-, neljafaasilist elektrivõrku, näiteks staari põhimõttel ühendatud võimsat mootorit, kasutatakse neljafaasilist automaati. Seda kasutatakse kolmefaasilise neljajuhtmelise võrgu sisendlülitiga.

Masina kehasse on võimalik ühendada kaheksa traati, millest neli on elektrivõrgu faasijuhtmed (millest üks on neutraalne) ja neli on väljastpoolt tulevad juhtmed (3 faasi ja 1 neutraalne).

Parameeter # 3. Ajavoolu iseloomustus

AB-l võib olla sama koormusvõimsuse näitaja, kuid seadmete elektrienergia tarbimise omadused võivad olla erinevad. Võimsustarve võib olla ebaühtlane, olenevalt tüübist ja koormusest, seadme sisselülitamisest, seadme väljalülitamisest või pidevast töötamisest.

Võimsuse kõikumine võib olla üsna märkimisväärne ja nende muutuste ulatus - lai. See toob kaasa masina seiskumise seoses nimivoolu ülemkogusega, mida loetakse võrgu valeks lahutamiseks.

Selleks, et vältida kaitseseadise otstarbekamat kasutamist, kui mitte-hädaolukorra standardmuudatusi (voolu suurenemine, võimsuse muutus) kasutatakse, kasutatakse teatud ajavoolu omadustega automaati (VTH). See võimaldab samade praeguste parameetritega lülitite kasutamist meelevaldsete lubatud koormustega ilma valede katkestusteta.

BTX näitab, millal lüliti töötab ja millised näitavad masina voolu- ja alalisvoolu suhet.

Iseloomuliku B masinate tunnused

Määratud karakteristikuga automaatne lülitub välja 5-20 sekundi jooksul. Praegune indikaator on 3-5 masina nominaalset voolu. Neid muudatusi kasutatakse, et kaitsta aheldusi, mis söövad kodumajapidamises kasutatavaid standardseadmeid.

Kõige sagedamini kasutatakse seda mudelit, et kaitsta korterite, eramajade juhtmeid.

Iseloomulik C - tööpõhimõtted

Nomenklatuuri tähistusega C automaatne seade on välja lülitatud 1-10 sekundi jooksul 5-10 tunnise vooluga.

Nad kasutavad selle grupi lülitite kõiki valdkondi - igapäevaelus, ehituses, tööstuses, kuid need on kõige nõudlikumad korterite, majade ja eluruumide elektrilise kaitse valdkonnas.

D-märgiga lülitite kasutamine

D-klassi masinaid kasutatakse tööstuses ja neid esindavad kolme- ja neljapostilised modifikatsioonid. Neid kasutatakse võimsate elektrimootorite ja erinevate 3-faasiliste seadmete kaitsmiseks. AV-i reageerimisaeg on 10-10 sekundit vooluga, mis on korduv 10-14, mis võimaldab seda tõhusalt kasutada erinevate juhtmestike kaitsmiseks.

Võimsad tööstusmootorid töötavad ainult AB-ga, millel on iseloomulik D.

Parameeter # 4. Hindatud töövool

Kokku on automaattites 12 muudatust, mis erinevad arvestusliku töövoolu - 1A, 2A, 3A, 6A, 10A, 16A, 20A, 25A, 32A, 40A osas. Parameeter vastutab automaadi töö kiiruse eest, kui vool ületab nominaalsuuruse.

Määratud omaduse lüliti valimine tehakse, võttes arvesse elektrijuhtmete võimsust, lubatud voolu, mida juhtmestik normaalses režiimis suudab taluda. Kui praegune väärtus on teadmata, määratakse see kindlaks valemite abil, kasutades traadi osa andmeid, selle materjali ja paigaldamismeetodit.

Automaatne 1A, 2A, 3A kasutatakse väikese vooluga ahelate kaitsmiseks. Need sobivad elektrienergia tarnimiseks vähesele arvule seadmetele nagu lambid või lühtrid, väikese võimsusega külmikud ja muud seadmed, mille koguvõimsus ei ületa masina võimekust. Lüliti 3A on tööstuses efektiivselt kasutatav, kui teete kolmnurga kolmefaasilise ühenduse.

Lülitite 6A, 10A, 16A puhul on lubatud kasutada elektrienergiat üksikutele vooluahelatele, väikestele ruumidele või korteritele. Neid mudeleid kasutatakse tööstuses ja nende abil antakse neile elektromehaaniliste jõudude, solenoide, kütteseadmete ja eraldi liiniga ühendatud keevitusseadmete võimsust.

Kolme-, neljapostiline automaat 16A kasutatakse kolmefaasilise võimsuse skeemi sisendina. Tootmises eelistatakse D-kõvera instrumente.

Masinaid 20A, 25A, 32A kasutatakse kaasaegsete korterite juhtmete kaitsmiseks, nad suudavad anda elektrit pesumasinatele, kütteseadmetele, elektriküttele ja muudele suure võimsusega seadmetele. Mudelina 25A kasutatakse sisendautomaadina.

Lülitid 40A, 50A, 63A kuuluvad suure võimsusega seadmete klassi. Neid kasutatakse elektri tootmiseks suure võimsusega seadmetes igapäevaelus, tööstuses, tsiviilehituses.

Kaitselülitite valik ja arvutamine

AB tunnuste tundmine võimaldab määrata, milline masin sobib konkreetseks otstarbeks. Enne optimaalse mudeli valimist tuleb siiski teha mõningaid arvutusi, mille abil saab täpselt määrata soovitud seadme parameetrid.

Samm # 1. Masina võimsuse kindlaksmääramine

Masina valimisel on oluline arvestada ühendatud seadmete koguvõimsusega.

Näiteks vajate masinat köögiseadmete ühendamiseks toiteallikaga. Oletame, et kohvimasin (1000 W), külmik (500 W), ahi (2000 W), mikrolaineahi (2000 W), elektriveekann (1000 W). Koguvõimsus on 1000 + 500 + 2000 + 2000 + 1000 = 6500 (W) või 6,5 kV.

Kui vaatate elektriühenduste võimsuse automaatlauda, ​​pidage meeles, et standardse juhtme pinge elamistingimustes on 220 V, siis sobib ühepositsiooniline või kahepositsiooniline automaatne 32A, mille koguvõimsus on 7 kW.

Tuleb arvestada, et võib osutuda vajalikuks suur energiatarve, sest töö ajal võib olla vajalik ühendada muid elektriseadmeid, mida algselt ei võetud arvesse. Selle olukorra prognoosimiseks kasutatakse kogutarbimise arvutamisel korrutustegurit.

Näiteks lisades täiendavaid elektriseadmeid, oli vaja 1,5 kW võimsust. Siis peate võtma koefitsiendiga 1,5 ja korrutama selle arvutatud võimsusega.

Arvutustes on mõnikord soovitatav kasutada vähendustegurit. Seda kasutatakse juhul, kui mitme seadme samaaegne kasutamine on võimatu. Oletame, et kogu elektrijuhtmestik köögiks oli 3,1 kW. Siis on vähendustegur 1, kuna võetakse arvesse samaaegselt ühendatud seadmete minimaalset arvu.

Kui mõnda seadet ei saa teistega ühendada, siis on vähendusteguriks väiksem kui üks.

Samm # 2. Masina nimivõimsuse arvutamine

Nimivõimsus on võimsus, mille korral juhtmestik ei ole lahti ühendatud. See arvutatakse järgmise valemi abil:

kus M on võimsus (W), N on elektrivõrgu pinge (Volt), CT on vool, mis võib masinast läbi minna (Ampere), on faasi nihke ja pinge nurga väärtust saava nurga kooseinus. Koosinusväärtus on tavaliselt 1, kuna praeguse ja pingefaasi vahel pole praktiliselt mingit nihet.

Valemist väljume ST:

Võimsus, mille oleme juba määranud ja võrgu pinge on tavaliselt 220 volti.

Kui koguvõimsus on 3,1 kW, siis

Saadud vool on 14 A.

Kolmasfaasilise koormuse arvutamiseks kasutatakse sama valemit, kuid võetakse arvesse nurgelpiiri, mis võib ulatuda suurte väärtustega. Tavaliselt ühendatud seadmes on nad loetletud.

3. samm. Rated current calculation

Nimivoolu arvutamiseks võib olla juhtmestiku dokumentatsioon, kuid kui see ei ole, siis määratakse see vastavalt juhtme omadustele. Arvutamiseks on vaja järgmisi andmeid:

  • juhi läbilõikepindala;
  • elamiseks kasutatav materjal (vask või alumiinium);
  • munemise viis.

Elutingimustes asub tavaliselt juhtmestik seina sees.

Vajalike mõõtmiste tegemiseks arvutatakse ristlõikepindala:

Valemil D on juhtme läbimõõt (mm),

S on juhi läbilõikepindala (mm 2).

Järgmiseks kasutage allolevat tabelit.

Võttes arvesse saadud andmeid, valime automaatvoolu töövoolu ja selle nimiväärtuse. See peab olema võrdne või väiksem kui töövool. Mõnel juhul on lubatud kasutada masinaid, mille nominaalvõimsus on suurem kui juhtmestiku tegelik vool.

Samm # 4. Ajavoolu omaduste kindlaksmääramine

BTXi korrektseks tuvastamiseks tuleb arvesse võtta ühendatud koormuste algusvooge. Vajalikud andmed leiate alltoodud tabelist.

Tabeli kohaselt saate seadme sisselülitamise hetkel (amprites) kindlaks määrata aja, mille jooksul praegune piirang taastub.

Näiteks kui võtate 1,5 kW võimsusega elektrilise lihajahutusega, arvutage tabelist selle töövool (see on 6,81 A) ja võttes arvesse käivitusvoolu (kuni 7 korda) mitmekordistavat, saadakse praegune väärtus 6,81 * 7 = 48 (A). Selle jõu voog voolab sagedusega 1-3 sekundit.

Arvestades B klassi VTK graafikuid, näete, et kui ülekoormus on, töötab kaitselüliti esimesel sekundil pärast lihuvõtme käivitamist. On ilmselge, et selle seadme mitmesus vastab klassile C, seega tuleb elektrilise lihumajaga töötamise tagamiseks kasutada masina C-tunnust.

Kodumajapidamisvajaduste jaoks kasutavad tavaliselt lülitid, mis vastavad B, C ja B omadustele. Suurte mitmikvoolude (mootorid, toiteplokid jne) seadmete tööstuses luuakse kuni 10 korda voolutugevus, mistõttu on soovitatav kasutada seadme D-modifikatsioone. Siiski tuleks arvestada selliste seadmete võimsust ja käivitusvoolu kestust.

Standardsed automaatlülitid erinevad tavapärasest, kuna need on paigaldatud eraldi lülitidesse. Seadme funktsioonide hulka kuulub ka ahela kaitsmine ootamatute võimsusjõudude, elektrienergia katkestuste eest terves või kindlas osas võrgust.

Kasulik video teema kohta

Video # 1: AB valimine jooksva iseloomuga ja praeguse arvutuse näide

Video # 2: nimivoolu AB arvutamine

Masinad, mis on kinnitatud maja või korteri sissepääsu juures. Need asuvad tugevates plastkastides. Võttes arvesse kaitselülitite põhiomadusi ja õigeid arvutusi, võite selle seadme jaoks valida õigesti.

Circuit Breakers - kuidas valida, omadused, graafika kaitse

Automaatlülitid (AV) on mõeldud nii asünkroonsete elektrimootorite kui ka muude elektrienergia vastuvõtjate sisse- ja väljalülitamiseks, samuti kaitsmaks neid ülekoormuse ja lühisevoolu eest.

Automaatkäitised võimaldavad hädaolukordade korral üheaegselt lõpetada kõik kolm faasi. Töörežiimis toimub sisse- ja väljalülitamine käsitsi, avariirežiimis lülitatakse need automaatselt välja elektromagnetilise, termilise või elektroonilise vabastamise teel.

Circuit Breaker Design

Masina oluline osa on vabastamine, mis kontrollib kaitstud võrgu määratud parameetrit ja toimib vabastusseadmes, mis lülitab masina välja. Kõige tavalisemad on järgmised reisiüksuste tüübid:

  1. elektromagnetiline (lühisevoolu kaitsmiseks);
  2. termiline (kaitseks ülekoormuse eest);
  3. kombineeritud, sealhulgas elektrooniline.

Elektromagnetiline vooluhulk koosneb liikuva tuumaga rõngast ja tagastusvedast. Kui lühisev vool voolab läbi spiraali, siis tõmmatakse tuum koheselt vabakäigustusmehhanismi väljalülitamisrööpa külge.

Termiline vabastamine on bimetallist plaat, mis on ühendatud järjestikku kontaktiga. Kui seda kuumeneb ülekoormuse vool, siis see paindub ja toimib vabalülitusmehhanismi vabastusmehhanismil.

Huvitav video seadme kaitselülitite kohta vt allpool:

Seal on mittepiiravad ja voolu piiravad kaitselülitid.

  1. Mittepiiravad lülitid ei piira praegust CKD ringluses ja see saavutab maksimaalse eeldatava väärtuse.
  2. Voolu piiravad lülitid piiravad CKD-d, lisades kiiresti täiendava kaare takistuse ringkonnakohtule (esimesel poolperioodil, enne kui CKC märgatavalt suureneb) ja seejärel lühikese ühenduse katkestamiseks. Sellisel juhul ei jõua praegune CKD oodatud arvutatud maksimumväärtuseni. Vooluhulga piiramine algab teatud praeguse väärtusega, mis määratakse praeguse piirangu tunnusena (joonis 6.1).

Näiteks sarja lülitid Compact NS (Merlin Gerin) on suurepärane praeguse piirata võime läbi kahekordse avamise tehnoloogia (väga kiire kontakt eraldamine toimel elektrodünaamilist jõud ja välimus kahel järjestikusel pazpyada kaare pinge järsk laine ees).

Kaitselülitite valik

Automaatlülitite valik on tehtud:

  1. nimivooluga
  2. aeg-ajalt (BTX),
  3. purunemisvõime, paigaldus- ja töötingimused.

Kaitselüliti omaduste õige valik on selle õigeaegse toimimise võti.

Õige kaitselüliti valimine, vt allolevat videot:

Nimivool ja pinge

Vooluahela nimivool In ja pinge U on voolu ja pinge väärtused, mida lüliti peamised voolu kandvad osad suudavad pidevas töös taluda. Vabastuslüliti nimivool võib autonendi nimivoolust erineda, sest masinasse saab sisestada madalama nimivooluga kaitselülitid.

Kaitselüliti iseloomustab veel üks, piiratud lülitusvõimsus (PKS). PKS nimetatakse lühisvoolu maksimaalseks väärtuseks, mida lüliti suudab mitu korda sisse ja välja lülitada, kuid jääb heas seisukorras.

Ajakaitse funktsioonid

Kaitselülititel võivad olla järgmised ajavoolu kaitse-omadused (BTX) (joonis 6.2) [11]:

  1. sõltub praegusest BTX-st. Sellistel lülititel on ainult termiline vabastus ja neid kasutatakse harva, kuna PKS ja kiirus on ebapiisavad;
  2. sõltumatu praegusest BTXist. Sellistel lülititel on ainult elektromagnetilise või pooljuhtväljundiga tehtud vooluhulk, mis töötab ilma viivitusega või aeglaselt;
  3. praegune sõltuv kaheastmeline ATX. Tsoonis liigvoolu- kaitselüliti katkeb praeguse sõltuva ajanihe on lühisvoolude tsoonis lüliti lülitab praeguse cut-off praeguste sõltumatud ettemääratud ajaperioodi (selektiivne lülitid) või ilma ajalise viivitusega (mitte-selektiivsed lülitid); Lüliti on termiliste ja elektromagnetlaine vabanemisega (Ühendatud) või kaheetapilise elektromagnetilist või pooljuht vabastamist;
  4. kolmeastmeline kaitsev VTH. Tsoonis ülevoolu kaitselüliti lahti praeguse sõltuva hilinemise piirkonnas lühisvoolu - sõltumatu, eelseadistatud aeg (valikuline mahalõiketsooniks) ja lähedalt RS - viivitamata (hetkeline töötsooni); hetkeline käivitamine tsooni, mille eesmärk on vähendada kestus praegune kokkupuude lähedalt puudused. Taolisi lüliteid pooljuhtide vabastamist ja kaitseks kasutada puksid paketi trafolisi ja söötja.

Vastavalt Rahvusvahelise Elektrotehnikakomisjoni (IEC) standarditele on aja ja praeguste reageerimisomaduste kohaselt kolme liiki lülitid: B, C, D (joonis 6.3).

Kaitselülitite turvaelemendid

  1. sõltuv
  2. iseseisev;
  3. piiratud sõltuv;
  4. kolmeastmeline;
    • lühiajalise viivitusega;
    • lühiajalise viivitusega.

Voolukatkestite ajutine omadus

t on elektromagnetilise vabanemise reaktsiooniaeg, k = I / In on nimiväärtuse praegune suhe.

Tüüp B on mitmekordse elektromagnetilise releaseri avanemisvoo suurus k = 3 - 6. Kodukasutuseks, kus koormusvool on madal ja lühisvool võib siseneda termilise tööpiirkonda, mitte elektromagnetilisse releaserisse.

Tüüp C on kvantifitseeritava kvartiini k = 5-10 avanemisvoolu suurus. Kodumajapidamiste ja tööstuslike rakenduste puhul: madala induktiivvooluga (külmutusmasinad ja kliimaseadmed) koormused mootorite puhul, mille käivitusaeg on kuni 1 s.

Tüüp D on k> 10 mitmekordse elektromagnetilise vabanemise avanemisvoolu suurus. Seda kasutatakse võimas pikkade käivitamismootorite jaoks.

Joonis - kaitselülitite B, C, D, Z, K ja S karakteristikud

Pingelülitidel kasutatavad termoülekanded on tundlikud välisallikatest pärit soojuse suhtes. Praktikas juhtub tihtipeale, et vahepealne polaarsõidu seade on nominaalses režiimis välja lülitatud ainult külgnevate postide kuumenemise tõttu. See toob kaasa selle tööpiirkonna piiramise ja nimivoolu korrigeerimise, võttes arvesse graafikut joonisel 6.4.

Joonis.6.4. AB-i kandevõime sõltuvus nende lähedasest asukohast: Kn = I / koormusfaktor, N - kaitselülitite arv, kui need asetsevad üksteise kõrval.

Voolukatkesti laadimisomadused

Enamike kaitselülitite koormatavus sõltub ümbritsevast temperatuurist: kui see väheneb, suureneb koormustegur ja kui see tõuseb, siis langeb (joonis 6.5). See piirab nende kasutamise võimalust tõsiste töötemperatuuride tingimustes, eriti kuuma töötubades või vabas õhus.

Kaitseseadmete funktsioonide eraldamine mitmele sõltumatule seadmele tekitab paigaldamise ja kasutamise ajal palju ebamugavusi.

Neil ei ole universaalsust ja sobib ainult konkreetse kaitselüliti jaoks.

Seepärast on arendajatel üha raskusi universaalse seadme loomisega.

Uue põlvkonna kaitselülitid on varustatud nn elektrooniliste väljaannetega, mis tagavad elektrimootori tervikliku kaitse ja kombineerivad kõigi ülalmainitud vabastuste funktsioonid ühes seadmes.

Need on valmistatud mikroprotsessori tehnoloogiast, mis tagab töökindluse, töökindluse ja temperatuuri suhtes vastupidavuse.

Nõuetekohaseks toimimiseks vajaliku toiteploki tagab kohe vabastamise praegune trafo.

Kaitsereisikomplektid koosnevad kolmest või neljast voolutrafost (olenevalt võrgu tüübist), elektroonilisest osast ja väljalülitusmehhanismist, mis toimib vahetult lülitusmehhanismil.

Väljalülituskõver, mis asünkroonse elektrimootori töönäitajale võib olla võimalikult lähedane (joonis 6.6), määratleb järgmised kaitseliigid [19]:

  • ülekoormuskaitse pööratava ajaga;
  • kaitse teatud aja möödudes elektrimootori rootori hõivamisega;
  • lühisekaitse lühiajalise tööga.

Huvitav video masinate omaduste kohta vt allolevat videot:

Millised on voolukatkestite praegused omadused?

Elektrivõrgu ja kõigi seadmete tavapärase töö ajal voolab kaitselüliti läbi elektrivoolu. Kuid kui praegune tugevus mingil põhjusel ületab nimiväärtusi, avaneb ahel voolukatkesti vabastuse tõttu.

Kaitselülitile iseloomulik vastus on väga oluline tunnus, mis kirjeldab, kui palju automaadi reaktsiooniaega sõltub automaatma voolava voolu suheest automaadi nimivoolu.

Seda omadust keerleb asjaolu, et selle väljendamiseks on vaja kasutada graafe. Sama reitinguga automaadid lahutatakse erinevalt erinevatel hetkel kehtivatel ületamistel olenevalt automaatkõvera tüübist (mõnikord nimetatakse praeguseks omaduseks), mille tõttu on erinevate laadimistsüklite puhul võimalik kasutada erinevate parameetritega automaate.

Seega toimub ühelt poolt kaitsevvoolu funktsioon ja teisest küljest tagatakse väärkähiste vähim arv - see on selle tunnusjooni tähtsus.

Energiatööstuses on olukordi, kus lühiajaline voolu suurenemine ei ole seotud avariirežiimi ilmnemisega ja kaitse ei tohiks selliseid muutusi reageerida. Sama kehtib ka masinate kohta.

Kui lülitate mõnda mootorit sisse, näiteks lastekolbpump või tolmuimeja, tekib reas piisavalt suur impulsivool, mis on tavalisest mitu korda kõrgem.

Vastavalt töö loogikale peab masin loomulikult lahti ühendama. Näiteks mootor kulutab käivitusrežiimis 12 A ja töörežiimis - 5. Seade maksab 10 A ja lõigab selle maha 12. Mida siis teha? Kui näiteks on seatud 16 A, siis on ebaselge, kas see lülitub välja või mitte, kui mootor on kinni keeratud või kaabel on suletud.

Seda probleemi oleks võimalik lahendada, kui see asetatakse väiksemale voolule, kuid siis käivitub see mis tahes liikumisega. Sel eesmärgil leiutas selline automaatkontseptsioon välja, kuna see on "ajavoolu iseloomulik".

Millised on ajad, voolukatkestite praegused omadused ja nende erinevus

Nagu on teada, on kaitselülitite peamised käivitusseadmed termilised ja elektromagnetilised releaserid.

Termiline vabastamine on bimetallist plaat, mis voolava vooluga kuumutamisel painutatakse. Seega käivitub mehhanism pika ülekoormuse käivitumisega, pöördvõrdeline viivitus. Bimetallilise plaadi kuumutamine ja vabastamise reaktsiooniaeg sõltuvad otseselt ülekoormuse tasemest.

Elektromagnetiline vabastus on solenoid koos südamikuga, solenoid magnetilist väli teatud sügavkülgel joonestub, mis käivitab vabastusmehhanismi - tekib hetkeline lühis, nii et mõjutatud võrk ei oota, kuni termiline vabastamine (bimetallplaat) soojeneb automaatselt.

Vooluahela reaktsiooniaja sõltuvus kaitselülitit läbivast voolust määrab voolukatkesti ajaomadused.

Tõenäoliselt märkisid kõik, et modulaarsete masinate korpustes on ladina tähed B, C ja D. Nii iseloomustavad nad elektromagnetilise vabanemise seatud punkti mitmekordsust automaadi nominaalväärtuseks, tähistades selle ajavoolu omadust.

Need tähed näitavad masina elektromagnetilise vabanemise hetkelist voolu. Lihtsamalt öeldes näitab kaitselüliti väljalülitamise näitaja kaitselüliti tundlikkust - madalaimat voolu, mille juures lüliti lülitub koheselt välja.

Masinal on mitu omadust, millest kõige sagedamini on:

  • - B - 3 kuni 5 × In;
  • - C - 5 kuni 10 × In;
  • - D - 10-20 × In.

Mida ülalnimetatud numbrid tähendavad?

Ma annan väikese näite. Oletame, et on kaks sama võimsusega (võrdelist nimivoolu) automaatset masinat, kuid vastuseomadused (ladina tähed automaatmasinal) on erinevad: automaatmasinad B16 ja C16.

B16 elektromagnetiliste releaserite tööpiirkond on 16 * (3. 5) = 48. 80A. C16 puhul on hetkeseisundi voolude vahemik 16 * (5. 10) = 80. 160A.

A 100 A voolu korral lülitub automaatne väljalülitus B16 peaaegu kohe, samal ajal kui C16 lülitub kohe välja, kuid pärast mõne sekundi möödumist termokaitse (pärast seda, kui bimetallplaat soojeneb).

Ehitistes ja korterites, kus kooremid on puhtalt aktiivsed (ilma suurte käivitusvooluta) ja mõned võimsad mootorid lülitatakse harvemini, on kõige tundlikumad ja eelistatumad kasutada automaatseid omadustega B. Praeguseks on iseloomulik C väga tavaline, mida saab kasutada ka elamute ja büroohoonete jaoks.

D omaduste osas sobib see lihtsalt elektrimootorite, suurte mootorite ja muude seadmete toiteks, kus nende sisselülitamisel võivad olla suured käivitusvoolud. Samuti võib lühendatud tundlikkusega lühisühenduse korral olla soovitatav kasutada automaatrežiimi D-tunniga sissejuhatavaid valikuid, mille puhul suuremat rühma AB lühikeseks ühendamiseks, et suurendada võimalusi.

Loogiliselt kokku leppida, et reaktsiooniaeg sõltub masina temperatuurist. Automaat sulgub kiiremini, kui selle soojusenergiat (bimetallplaat) kuumutatakse. Vastupidi, kui te esmakordselt sisselülitate, kui bimetallautomaadi külma väljalülitusaeg on pikem.

Seepärast iseloomustab graafik ülemist kõverat automaadi külma olekus, madalam kõver kujutab endast automaatset kuuma seisundit.

Punktiirjoon näitab automaatväljundi praegust piirväärtust kuni 32 A.

Mida kuvatakse graafiku ajavoolu omadustes

Kasutades näitena 16-amprivõimendiga kaitselülitit, millel on ajavoolu tunnus C, proovime kaaluda kaitselülitite reaktsioonivõimalusi.

Graafik näitab, kuidas vooluahela kaudu voolav vool mõjutab selle väljalülitamise aja sõltuvust. Ahelon voolava voolu arvukus automaadi nimivoolule (I / In) tähistab X-telge ja reaktsiooniaega sekundites Y-teljel.

Eespool öeldi, et elektromagnetiline ja termiline vabastamine on masina osa. Seetõttu võib ajakava jagada kaheks osaks. Graafiku järsu osa näitab ülekoormuskaitset (termilise vabastamise töö) ja lühemat osa, kaitse lühise eest (elektromagnetiliste vabastuste töö).

Graafikus võib näha, et kui C16 on ühendatud koormusiga 23, siis peaks see 40 sekundi jooksul välja lülituma. See tähendab, et kui ülekoormus tekib 45% võrra, lülitub seade välja 40 sekundi pärast.

Suurte voolude puhul, mis võivad elektrijuhtmete isolatsiooni kahjustada, on masin võimeline reageerima koheselt elektromagnetilise vabastuse tõttu.

Kui 5x In (C) vool läbib C16 masinat (80 A), peaks see töötama pärast 0,02 s (see tähendab, et masin on kuum). Külma olekuga niisugusel koormusel lülitub see 11 sekundi jooksul välja. ja 25 sekundit (masinate puhul kuni 32 A ja üle 32 A).

Kui masin läbib 10 × voolu, lülitub see välja 0,03 sekundi jooksul külmas olekus või vähem kui 0,01 sekundit kuuma olekus.

Näiteks juhul, kui tekib lühise Circuit, mis on kaitstud C16 kaitselüliti ja 320 Amps vool, tekib kaitselüliti ahela katkestusaeg 0,008 kuni 0,015 sekundit. See eemaldab avariijuhtme võimsuse ja kaitseb seadet, mis lukustub elektriseadme ja elektrijuhtmetega, tulekahju ja täielikku hävitamist.

Masinad, mille omadusi eelistatakse kodus kasutada

Korterites, kus on võimalik, on vaja kasutada B-kategooria automaatseid masinaid, mis on tundlikumad. See masin töötab ülekoormuse eest samamoodi nagu C-kategooria masin. Aga kui tegemist on lühisega?

Kui maja on uus, hea elektriseade, alajaam on lähedal ja kõik ühendused on kõrge kvaliteediga, siis võib lühisvool jõuda selleni, et see peaks olema piisav isegi sisendautomaadi käivitamiseks.

Vool võib osutuda väikesteks, kui maja on vana, lühikeseks, kui see on vana, ja liiga suurte takistustega trahvid (eriti maapiirkondade võrkudes, kus on suur takistus, faaside null) - sel juhul ei pruugi C-kategooria automaatne töö üldse töötada. Seega on ainus võimalus sellest olukorrast B-tüüpi omadustega automaatide paigaldamiseks.

Sellest tulenevalt on B-tüüpi omadus kindlasti eelistatavam, eriti lastekodus või maal või vanas fondis.

Igapäevaelus on soovitav paigaldada automaattiklassi C tüüp ja pistikupesade ja valgustuse jaoks rühma-liinide B-tüüpi automaatrežiim. Seega saab jälgida selektiivsust ja sisendautomaat ei lülitu välja ega kustuta kõiki korter.

Kaitselülitite peamised tehnilised omadused

Praktilises rakenduses on oluline mitte ainult teada voolukatkestite omadused, vaid ka mõista, mida need tähendavad. Selle lähenemisviisi abil saate otsustada enamiku tehniliste probleemide üle. Vaatame, mida mõeldakse etiketil märgitud või muude parameetritega.

Kasutatud lühend.

Märgistusseadmed sisaldavad kogu vajalikku teavet, mis kirjeldab kaitselülitite põhiomadusi (edaspidi AB). Mida nad mõtlevad, selgitatakse allpool.

Ajavoolu tunnus (BTX)

Selle graafilise kuva abil on võimalik saada tingimuste visuaalne kuju, mille alusel aktiveeritakse vooluahela lülitamise mehhanism (vt joonis 2). Graafikul näitab vertikaalkaugus AB-i aktiveerimiseks vajalikku aega. Horisontaalne skaala näitab suhet I / In.

Joon. 2. Kõige tavalisemate automaattiitrite praeguste omaduste graafiline kuva.

Lubatav ülekoormus määrab ajavoolu omaduste tüübi, mis vabastatakse seadmetes, mis toodavad automaatset väljalülitamist. Vastavalt kehtivatele eeskirjadele (GOST P 50345-99) on igale tüübile määratud tähis (ladina tähtedega). Lubatav ülejääk määratakse koefitsiendiga k = I / In iga tüübi kohta standardväärtused (vt joonis 3):

  • "A" - maksimaalne - kolm korda suurem;
  • "B" - 3 kuni 5;
  • "C" - 5-10 korda korrapärasem;
  • "D" - 10-20 korda üleliigne;
  • "K" - 8-14;
  • "Z" - veel 2-4 töötajat.
Joonis 3. Põhiliste aktiveerimisparameetrite erinevad tüübid

Pange tähele, et see diagramm kirjeldab täielikult solenoidi ja termoelemendi aktiveerimise tingimusi (vt joonis 4).

Solenoidi ja termoelemendi töötamise tsoonide graafik

Ülaltoodu põhjal võime kokku võtta, et AB-i peamine kaitsetunnus on tingitud ajavoolu sõltuvusest.

Tüüpiliste ajavooluomaduste loend.

Olles otsustanud märgistamise üle, jätkame kaalumist erinevatele seadmetele, mis vastavad kindlale klassile sõltuvalt omadustest.

Kaitselülitite laua ajavoolu omadused

Tüüp "A" iseloomulik

Selle kategooria termokaitse AB aktiveeritakse, kui vooluahela suhe nominaalseks (I / In) ületab 1,3. Nendes tingimustes toimub sulgemine 60 minuti pärast. Kuna nimivool on veelgi ületatud, vähendatakse reisi aega. Elektromagnetiline kaitse aktiveerub, kui nominaalne väärtus kahekordistub, vastamissagedus on 0,05 sekundit.

See tüüp on loodud ahelates, mis ei kuulu lühiajalise ülekoormuse alla. Näiteks võime võtta pooljuhtseadiste ahelad nende ebaõnnestumise korral, praegune ületamine on ebaoluline. Seda tüüpi ei kasutata igapäevaelus.

Funktsioon "B"

Selle tüübi erinevus eelmisest on operatsiooni voolus, see võib standardist ületada kolm kuni viis korda. Sellisel juhul aktiveeritakse solenoidmehhanism viiekordse koormusega (pinge väljalülitusaeg - 0,015 s), termoelement - kolmekordne (mitte rohkem kui 4-5 sekundit, vajadus välja lülitada).

Selliste seadmete tüübid on leidnud rakenduse võrkudes, mille jaoks suured pingevoolud pole iseloomulikud, näiteks valgustusahelate jaoks.

S201, mille on valmistanud ABB ajavoolu omadustega B

Iseloomulik "C"

See on kõige tavalisem tüüp, selle lubatav ülekoormus on suurem kui kahe eelmise tüübi puhul. Kui nominaalset režiimi ületatakse viis korda, aktiveerub termoelement, see on ahel, mis lülitab toiteallika välja pooleteise sekundi jooksul. Solenoidmehhanism aktiveeritakse, kui ülekoormus ületab normi kümnekordselt.

AB andmed on kavandatud kaitsma elektrilist vooluringi, milles võib esineda mõõdukas käivoolu, mis on tüüpiline leibkonna võrgule, mida iseloomustab segakoormus. Seadme ostmine kodus on soovitatav valida see vorm.

Triplex Legrandi masin

Iseloomulik "D"

Seda tüüpi AB-d iseloomustavad suured ülekoormuse omadused. Nimelt kümnekordne ülemäärane norm thermoelement ja kakskümmend kordne jaoks solenoid.

Kandke selliseid seadmeid suurel algusvooluga ahelatel. Näiteks asünkroonsete elektrimootorite käivitusseadmete kaitsmiseks. Joonisel 9 on näha selle rühma kaks instrumenti (a ja b).

Joonis 9. a) BA51-35; b) BA57-35; c) BA88-35

Iseloomulik "K"

Sellistel AV-del on solenoidi mehhanismi aktiveerimine võimalik, kui praegune koormus ületatakse 8 korda ja see tagatakse juhul, kui on 12-kordne normaalne režiim ülekoormus (kaheksateistkordne konstantse pinge korral). Koorma väljalülitamise aeg ei ületa 0,02 sekundit. Termoelemendi puhul on selle aktiveerimine võimalik tavalisest režiimis üle 1,05.

Rakendusala - induktiivkoormusega ahelad.

Iseloomulik "Z"

Seda tüüpi eristab väike lubatud nimivoolu ületav väärtus, minimaalne piir on standardi kaks korda suurem, maksimaalne on neli korda. Termoelemendi tööparameetrid on samad, mis AB-le iseloomuliku K-ga.

Seda alamliiki kasutatakse elektrooniliste seadmete ühendamiseks.

Iseloomulik "MA"

Selle grupi eripära on see, et koorma lahutamiseks termoelementi ei kasutata. See tähendab, et seade kaitseb ainult lühistest, on elektrimootori ühendamine üsna piisav. Joonis 9 näitab sellist kohanemist (c).

Nominaalne töövool

See parameeter kirjeldab tavapärase töö maksimaalset lubatud väärtust, kui see on ületatud, aktiveeritakse koorma lastav süsteem. Joonisel 1 on näidatud, kus see väärtus kuvatakse (IEK tooted on näide).

Regulaarne töö voolab ringi

Termilised parameetrid

Termin tähistab termoelemendi töötingimusi. Neid andmeid saab saada vastavast ajagraafikust.

Ultimate breaking capacity (PKS).

See tähis tähendab maksimaalset lubatavat koormust, mille korral seade suudab kontuuri avada ilma jõudlust kaotamata. Joonisel 5 on see märgistus tähistatud punase ovaalsega.

Joon. 5. Seadme tootja Schneider Electric

Praegune piirkategooria

Seda terminit kirjeldatakse AB-i võime lahti ühendada enne, kui selle lühisevool jõuab maksimumini. Kohandused on saadaval kolme liigi praeguse piiranguga, olenevalt laadimisaja väljalasetest:

  1. 10 ms ja rohkem;
  2. 6 kuni 10 ms;
  3. 2,5-6 ms.

Seega, mida suurem kategooria, seda väiksem on elektrijuhtmete kuumusega kokkupuude, mistõttu väheneb selle süüte oht. Joonisel 6 on see kategooria ringiga punane.

Tähis BA47-29 tähistab praeguse piirangu klassi

Pidage meeles, et esimese kategooria AB-l ei pruugi olla asjakohast märgistust.

Väike elu, kuidas valida kodus õige lüliti

Pakume mõningaid üldisi soovitusi:

  • Tuginedes kõigile ülalnimetatutele, peaksime valima AB-ga ajahetke "C".
  • Standardsete parameetrite valimisel tuleb kaaluda kavandatud koormust. Arvutamiseks tuleks kasutada Ohmi seadust: I = P / U, kus P on ahela võimsus, U on pinge. Voolutugevuse (I) arvutades valime nominaalse AB vastavalt tabelile, mis on kujutatud joonisel 10. Joonis 10. Diagramm AB valimiseks sõltuvalt koormusvoolust

Kirjutame, kuidas ajakava kasutada. Näiteks, koormusvoolu arvutamisel saime tulemuse 42 A. Teil tuleb valida automaat, kus see väärtus asub rohelises tsoonis (tööpiirkonnas), siis see on 50 A. Valikus peaks arvestama ka seda, milline on praegune tugevus juhtmestiku jaoks.. Selle väärtuse põhjal on lubatud masin valida, tingimusel et koormusvool on väiksem kui juhtmestiku arvutuslik vool.

  • Kui on ette nähtud jäävvooliseade või diferentsiaal voolukatkesti, tuleb tagada maandamine, muidu need seadmed ei pruugi korralikult töötada;
  • Parem on eelistada tuntud kaubamärkide tooteid, need on usaldusväärsemad ja kauem kui Hiina tooted.