Vooluahela spetsifikatsioonid
- Küte
Kaitselüliti või lihtsalt lihtsalt kaitselüliti on peaaegu kõigile tuttav elektriseade. Kõik teavad, et masin lülitab võrgu välja, kui sellega on probleeme. Kui te ei ole tark, siis on need probleemid liiga elektrivooluga. Liigne elektriline vool on ohtlik, kui kõik juhtmed ja kodumasinad ei tööta, võib-olla ülekuumenemise, tulekahju ja seega ka tulekahju. Seepärast on kaitse kõrge voolu vastu elektriahelate klassikaline ja see eksisteeris elektrifitseerimise ajal.
Maksimaalse voolukaitse seadmetel on kaks olulist ülesannet:
1) õigel ajal ja täpselt ära tunda liiga kõrge voolu;
2) katkestage ahel enne, kui see vool võib põhjustada mingeid kahjustusi.
Sellisel juhul saab suure voolu jagada kahte kategooriasse:
1) võrgu ülekoormuse tagajärjel tekkinud suured voolud (näiteks suure hulga kodumasinate lülitamine või mõne neist rike);
2) lühisev ülekoormus, kui null- ja faasijuhtmed on otseselt ühendatud, mööda koormust.
Võib-olla võib see mõnele inimestele kummaline olla, kuid ekstreemse lühisvooluga on see kõik väga lihtne. Kaasaegsed elektromagnetilised statiivid hõlpsasti ja täiesti õigesti lühisid ning koormus lahutavad sekundi murdosa, vältides juhtmete ja seadmete vähimatki kahjustamist.
Ülekoormuse vooludega on veelgi raskem. See vool ei erine oluliselt nimiväärtusest, võib mõne aja pärast voolata mööda vooluringi ilma igasuguste tagajärgedeta. Seetõttu ei ole niisugust praegust koheselt vaja välja lülitada, eriti kuna see oleks võinud tunduda väga lühidalt. Olukorda raskendab asjaolu, et igal võrgul on oma piiratud ülekoormusvool. Ja mitte ühtki.
Vooluahela seade
On mitmeid vooge, millest igaühe jaoks on teoreetiliselt võimalik kindlaks määrata maksimaalne võrgu seiskamisaeg, ulatudes mõnest sekundist kümnete minutiteni. Kuid ka valepositiivid tuleb ka välistada: kui võrgu vool on kahjutu, siis ei tohiks sulgemine minna ega tunde - mitte kunagi üldse.
Selgub, et ülekoormuse kaitse seadeväärtust tuleks kohandada konkreetse koormusega, muuta selle vahemikku. Ja muidugi tuleb enne ülekoormuskaitse seadme paigaldamist laadida ja kontrollida.
Seega on tänapäevases "automaatikas" olemas kolme tüüpi väljalasked: mehaaniline - käsitsi sisselülitamine ja välja lülitamine, elektromagnetiline (solenoid) - lühisevoolu väljalülitamine ja kõige raskem - soojuskaitse, et kaitsta ülekoormust. See on kaitselülitile iseloomulik soojus- ja elektromagnetiline väljalülitusseade, mis tähistab seadme praeguse reitingu tähistava numbri ees olevat ladina tähte korpusel.
See omadus tähendab:
a) ülekoormuskaitse tööpiirkond on sisseehitatud bimetallplaadi parameetrite tõttu, ahela painutamine ja purunemine, kui selle kaudu voolab suur elektrivool. Täppis reguleerimine saavutatakse selle plaadi vajutamisega kruvi reguleerimisel;
b) sisseehitatud solenoidi parameetrite tõttu maksimaalse voolukaitse tööpiirkond.
Kaitselüliti ajavool
Allpool loetleme modulaarsete kaitselülitite omadused, räägime sellest, kuidas need üksteisest erinevad ja millised on need masinad. Kõik omadused sõltuvad koormusvoolust ja selle voolu väljalülitusajast.
1) Iseloomulik MA - termiline vabastamine puudub. Tegelikult pole see tõesti alati vajalik. Näiteks elektrimootorite kaitse toimub tihti maksimaalse voolu releedega ja sellisel juhul on automaatne ainult lühisevoolu kaitsmiseks vajalik.
2) Iseloomulik A. Selle omaduse automaatne soojuslik vabastamine võib käivituda nimivoolu juures 1,3. Samal ajal jääb aega umbes tund. Vooluhulga korral, mis ületab nominaalset kahet, saab elektromagnetiline vabastus käivituda umbes 0,05 sekundi jooksul. Aga kui solenoid ei tööta topeltvoolu ülemises osas, on termiline vabastamine endiselt "mängul", lahutades koormuse umbes 20-30 sekundit. Kui voolutugevus ületab kolme korda, on elektromagnetiline vabastus garanteeritud töötama sajandikku sekundis.
Kaitselülitite omadused A paigaldatakse nendesse ahelatesse, kus tavapärases töörežiimis ei esine mööduvat ülekoormust. Näiteks on ahel, mis sisaldab pooljuhteelementidega seadmeid, mis võivad väikese liigse vooluga rikkuda.
3) Iseloomulik B. Kõnealuste automaatide iseloomulikkus erineb iseloomulust A selle poolest, et elektromagnetiline vabastamine võib toimida ainult siis, kui voolutugevus ületab mitte kahe, vaid kolme või enama korra. Solenoidi reageerimisaeg on ainult 0,015 sekundit. Automaatploki B kolmekordse ülekoormuse termiline vabastamine töötab 4-5 sekundi pärast. Automaatne garanteeritud töö toimub vahelduvvoolu viiskordsel ülekoormusel ja koormusel, mis ületab nominaalset 7,5 korda DC-ahelates.
Kaitselülitite omadusi B kasutatakse valgustusvõrkudes ning ka muudes võrkudes, kus voolu algus suureneb või väheneb või puudub üldse.
4) Iseloomulik C. See on kõige enam elektrikutele kõige kuulsam omadus. Automaatika C eristatakse veelgi suurema ülekoormusega võrreldes automaatide B ja A korral. Seega on iseloomuliku C automaatväljundi minimaalne vastusvool viis korda nominaalset voolu. Samal ajal vallandab termiline vabastus 1,5 sekundi pärast ja elektromagnetilise vabanemise tagatud vabastamine tekib vahelduvvoolu kümnekordsel ülekoormusel ja 15-kordse ülekoormuse korral alalisvoolu ahelates.
Kaitselülitid C on soovitatavad paigaldamiseks segakoormusega võrkudesse, eeldades, et mõõdukad pingevoolud, mille tõttu leibkondi sisaldavad täpselt seda tüüpi automaatlülitusseadet.
Vooluahela B, C ja D spetsifikatsioonid
5) Iseloomulik D - omab väga suurt ülekoormust. Selle automaadi elektromagnetilise solenoidi minimaalne käivitusvool on kümme nominaalset voolu ja termiline vabastamine saab käivitada 0,4 sekundit. Garanteeritud operatsioon on varustatud kahekümne ülekoormusega.
Kaitselülitite omadused D on ette nähtud peamiselt suure jõuülekandega elektrimootorite ühendamiseks.
6) Tunnust K iseloomustab suur erinevus maksimaalse solenoidse käivitumiskiiruse vahel vahelduvvoolu ja alalisvoolu ahelates. Minimaalne ülekoormusvool, mille korral elektromagnetväljund saab nende masinate käivitamiseks käivitada, on kaheksa nimivoolu ja sama kaitse tagatud vastamisvool on 12 vahelduvvoolu ahela nimivoolu ja 18 alalisvoolu voolu nominaalvoolu. Elektromagnetilise vabastamise reaktsiooniaeg on kuni 0,02 sekundit. Automaatploki K termiline vabastamine võib käivituda vooluga, mis ületab hinnatud väärtust vaid 1,05 korda.
Nende karakteristikute K omaduste tõttu kasutatakse neid automaatrežiime ainult induktiivse koormuse ühendamiseks.
7) Characteristic Z omab ka erinevusi elektromagnetilise vabastamise tagatud töö vooludes vahelduvvoolu ja alalisvoolu ahelates. Nende masinate minimaalne võimalik solenoid-väljalülitusvool on kaks nominaalset ja elektromagnetilise vabastamise garanteeritud väljalülitusvool on AC-ahelate kolm nominaalset voolu ja alalisvooluahela 4,5 nominaalset voolu. Automaat-Z soojuslik vabastamine, nagu automaat K, võib käivituda 1,05-ga nimiväärtusest.
Z masinaid kasutatakse ainult elektrooniliste seadmete ühendamiseks.
Circuit Breaker Kategooriad: A, B, C ja D
Kaitselülitid on seadmed, mis vastutavad elektrivoolu kaitsmise eest suure vooluga kokkupuutest põhjustatud kahjustuste eest. Elektronide liiga tugev vool võib kahjustada kodumasinaid, samuti põhjustada kaabli ülekuumenemist järgneva tagasivoolu ja süttimisega. Kui liin ei ole aja jooksul pingestatud, võib see põhjustada tulekahju. Seepärast on elektripaigaldiseeskirjade (elektripaigaldustingimuste reeglid) nõuete kohaselt keelatud võrgu kasutamine, milles elektrikaitselülitid pole paigaldatud. AB-l on mitu parameetrit, millest üks on automaatse kaitselüliti ajavool. Selles artiklis selgitame A, B, C ja D kategooria kaitselülitite erinevust, mille kaitsmiseks kasutame neid võrke.
Võrgu kaitseseadmete tunnused
Ükskõik mis klassi kaitselüliti kuulub, on selle põhiülesanne alati sama - kiiresti tuvastada ülemäärase voolu välimus ja võrgu välja lülitada, enne kui kaabel ja liiniga ühendatud seadmed on kahjustatud.
Vooluhulgad, mis võivad võrgustikku olla ohtlikud, on jagatud kahte tüüpi:
- Ülekoormuse voolud Nende välimus esineb enamasti tänu seadmete võrgu lisamisele, mille koguvõimsus ületab selle võimsuse, mille joon suudab taluda. Veel üks ülekoormuse põhjus on ühe või mitme seadme rike.
- Lühisega põhjustatud ülekoormus. Lüli tekib, kui faas ja neutraaljuhid on omavahel ühendatud. Tavalises olekus on need koormus eraldi ühendatud.
Vooluahela seade ja tööpõhimõte - videos:
Ülekoormus
Nende suurus kõige sagedamini ületab automaatselt nominaalset väärtust, nii et sellise elektrivoolu läbimine mööda ringlussüsteemi, kui see ei kao liiga kaua, ei kahjusta liini. Sellega seoses ei ole antud juhul vajalik hetkeline pingestuse väljalülitamine, seepärast jõuab sageli sageli automaatselt elektrivool. Iga AB on kavandatud teatud elektrivoolu ületamiseks, milles see käivitub.
Kaitselüliti reageerimisaeg sõltub ülekoormuse suurusest: mõne normaali ületavusega võib kuluda tund või rohkem ja märkimisväärse ühe sekundi jooksul.
Võimsa koormuse mõjul vooluvuse katkestamiseks vastab soojuspaisumine, mis põhineb bimetallplaadil.
Seda elementi kuumutatakse võimsa voolu mõjul, see muutub plastiks, paindub ja põhjustab automaatse käivitumise.
Lühis voolud
Lühisülekandest põhjustatud elektronide voog ületab oluliselt kaitsevahendi väärtust, nii et viimane kohe käivitub, lülitades voolu välja. Lühise ja viivitamatu reaktsiooni tuvastamiseks vastutab elektromagnetiline vabastamine, mis on südamikuga solenoid. Viimane ülekoormus mõjutab koheselt lülitit, põhjustades selle liikumist. See protsess võtab paar sekundit.
Siiski on üks nüanss. Mõnikord võib ülekoormuse vool olla väga suur, kuid seda ei põhjusta lühis. Kuidas peaks aparatuur määrama nendevahelise erinevuse?
Video automaatlülitite valikulisusest:
Siinkohal jätkame sujuvalt põhiküsimusega, millele meie materjal on pühendatud. Nagu öeldud, on olemas mitmed AB klassid, mis erinevad ajahetkel iseloomuliku iseloomuga. Kõige tavalisemad neist, mida kasutatakse majapidamises elektrivõrkudes, on klasside B, C ja D seadmed. A-kategooria kaitselülitid on palju vähem levinud. Need on kõige tundlikumad ja neid kasutatakse täppisinstrumentide kaitsmiseks.
Nende seas erinevad praegused hetkeseadised. Selle väärtuse määrab voolu läbilaskevõime korduvus automaadi nimiväärtusele.
Kaitselülitite väljalülitusomadused
Selle parameetriga määratud AB-klass on tähistatud ladina tähega ja kinnitatakse seadme kehasse nimivoolule vastava numbri ees.
Vastavalt EMP kehtestatud klassifikatsioonile on kaitseautomaadid jagatud mitmesse kategooriasse.
MA tüüpi masinad
Selliste seadmete eripära on nendes termilise vabanemise puudumine. Selle klassi seadmed on paigaldatud elektrimootorite ja muude võimsate seadmete ühendussõlmesse.
Ülekoormuskaitse niisugustes liinides pakub ülekoormuslülitust, kaitseb kaitselüliti ainult ülekoormuslülitustest põhjustatud kahjustusi.
A-klassi seadmed
Nagu öeldud, on A-tüüpi masinatel kõige suurem tundlikkus. Ajavoolu karakteristikutega seadmete soojuslik vabastamine aeglustab sagedamini jõudlusega AB-d 30% võrra.
Elektromagnetiline väljalülituspähkel lülitab võrgu välja umbes 0,05 sekundi võrra, kui vooluahela elektrivool ületab nimiväärtust 100% võrra. Kui mingil põhjusel pärast elektrivoolu võimsuse kahekordistamist koefitsiendiga kaks ei saanud elektromagnetiline solenoid töötada, siis vabaneb bimetallieraldus võimsusest 20-30 sekundit.
Liinide hulka kuuluvad ajaga hoiustamise tunnus A masinad, mille käigus isegi lühiajalised ülekoormused on vastuvõetamatud. Nende hulka kuuluvad ahelad, milles on pooljuhtide elemendid.
B-klassi ohutusseadmed
B-kategooria seadmetest on vähem tundlik kui A-tüüpi. Elektromagnetiline vabastus neis käivitub, kui nimivool on 200% kõrgem ja vastamisaeg on 0,015 sekundit. Bimetallplaadi töötamine rikkis koos iseloomuga B-ga sarnase AB-i nominaalväärtusega ületab 4-5 sekundit.
Selle seadme seadmed on ette nähtud paigaldamiseks liinidele, mis sisaldavad pistikupesasid, valgustusseadmeid ja muid ahelasid, kus elektrivoolu alustades ei ole või on minimaalne väärtus.
C-kategooria masinad
Kodu võrkudes on kõige sagedasemad C-tüüpi seadmed. Nende ülekoormus on isegi kõrgem kui eelnevalt kirjeldatud. Selleks, et paigaldada elektromagnetiline väljalülitus solenoid, peab selline seade olema paigaldatud nii, et selle läbivate elektronide voog ületab nimiväärtust 5 korda. Termokaitsesüsteem katkestab 1,5 sekundi jooksul kaitseseadme väärtuse viiekordse ületava väärtuse.
Nagu juba öeldud, on ajami kaitselülitite paigaldamine aega iseloomulik C tavaliselt leibkonna võrkudes. Nad teevad suurepärast tööd sisendseadmete rolli üleüldise võrgu kaitsmiseks, samas kui B-kategooria seadmed sobivad hästi üksikutele harudele, mille külge on ühendatud väljalaske- ja valgustusseadmed.
See võimaldab jälgida kaitsemehhanismide selektiivsust (selektiivsus), ja ühe ahela lühise puudumine ei põhjusta kogu maja energiat.
Circuit Breakers D-kategooria
Neil seadmetel on suurim ülekoormus. Selles seadmes paigaldatud elektromagnetilise mähise käitamiseks on vaja kaitsta kaitselüliti elektrivoolu ületada vähemalt 10 korda.
Sellisel juhul vabaneb termiline vabastamine 0,4 sek.
D-tunnusega seadmeid kasutatakse sageli üldistes hoonete ja rajatiste võrgustikes, kus neil on turvavõrgu roll. Need käivituvad, kui lülituslülitid ei ole eraldi ruumis õigeaegselt katkestatud. Samuti on need paigaldatud vooluringidesse, kus on palju lähtevooge, mille külge näiteks elektrimootorid on ühendatud.
Kategooria K ja Z ohutusseadmed
Selliste tüüpide automaadid on palju vähem levinud kui eespool kirjeldatud. K-tüüpi seadmetel on elektromagnetilise väljalülitamise jaoks vajalike praeguste väärtuste suur erinevus. Vahelduvvooluahela korral peab see indikaator ületama nominaalsüsteemi 12 korda ja konstantseks - 18 võrra. Elektromagnetilise solenoidi töö ei toimu rohkem kui 0,02 sekundit. Sellises seadmes võib termilise vabanemise toimida siis, kui nimivool ületab ainult 5%.
Need funktsioonid on tingitud K-tüüpi seadmete kasutamisest äärmiselt induktiivsete koormustega ahelates.
Z-tüüpi seadmetel on ka elektromagnetilise väljalülitamise solenoidi erinevad väljalülitusvoolud, kuid levimine ei ole sama suur kui AV-kategooria K. Vooluahela vooluringil tuleb nende lahtiühendamiseks pidurdada kolmekordselt ja DC-võrkudes peab elektrivool olema 4,5 korda nominaalset.
Z-iseloomulikke seadmeid kasutatakse ainult liinidel, kuhu on ühendatud elektroonilised seadmed.
Ilmselgelt video kategooriate masinate kohta:
Järeldus
Käesolevas artiklis analüüsisime kaitseautomaatide ajapõhiseid omadusi, nende seadmete liigitamist vastavalt EMP-le, samuti arutasime, millised ahelad on paigaldatud eri kategooriate seadmetesse. Saadud teave aitab teil määrata, milliseid kaitseseadmeid tuleks võrgul kasutada, lähtudes sellest, millistesse seadmetesse see on ühendatud.
Mugav kodu
Kommunikatsioon majas
Täname teid ühiskondlikus ühiskonnas jagamise eest. võrgud:
Breiku praeguse piirklass
Kaitselüliti praegune piiriklass - kaitselüliti
Kaitselüliti praeguse piiri klass määratakse kindlaks elektrikaare kustutamise kiirusega, mis tekib siis, kui seade on lühikese lülituse korral välja lülitatud
Lühise ajal lõhestatakse ahel kontaktidest ja lülitab vastavalt välja. Tegelikult võib lühis vool jõuda mitme tuhande amprini. Mõistetavalt moodustub ava kontaktide vahele elektriline kaar. Lisaks on kaarel kõrge temperatuur. Sellest tulenevalt võib masin ebaõnnestuda. See tähendab, et kaar tuleb maksta nii kiiresti kui võimalik. Kaar kaotab kaare kambri.
Auto piiravad praegused klassid
Kaitselüliti praegune piiriklass näitab, kui pikk kaar kustub. Omalt poolt on erinevatel automaatitel erinevad heitkoguste määrad. Seega on voolukatkestitel kolm liiki praeguse piiri.
Kaarekontaktide kiirus väljendatakse vahelduva voolamise perioodi murdosades või millisekundites. Nagu teada, on elektrivoolu sagedus f Venemaal ja SRÜ riikides 50 Hertz. Teisisõnu vahelduvvoolu omadused ja suund muutuvad tsükliliselt 50 korda sekundis. Ühe täieliku muutuse aeg (võnkumine) nimetatakse perioodiks T ja mõõdetakse sekundites. Vahelduvvoolu ja -pinge perioodi ja sageduse suhet väljendatakse valemiga f = 1 / T. Ja vastupidi, T = 1 / f = 1/50 = 0,02 sekundit või 20 millisekundit. See tähendab, et üks ajavahemik 1 T = 20 ms; poolperiood 1/2 T = 10ms. - poolperiood.
Kolmanda klassi voolu piiramine tähendab, et kaar kustub 1/3 poolperioodist, mis tähendab ligikaudu 3-5 millisekundit (0,003-0,005 sekundit). Teise klassi omakorda kaar vabastatakse 1/2 poolperioodil või 5-10 millisekundi (0,005-0,01 sekundit). Esimeses klassis ei piirata piirangut ja kustutamine toimub poole või enama, see tähendab 10 millisekundit või rohkem.
Praegune piirklass on masina kehale tähistatud nelinurkse raamiga numbritega 3 või 2. Nagu tavaliselt, asub see vahetatava võimsuse ristkülikukujulisena. Eelkõige on niisuguse märgistusega kaitselüliti esimese klassi voolu piiramine.
Masina voolutugevus ja nimivõimsus
Põhimõtteliselt on voolu piirava voolukaitse kõrge klass mõistlik ainult modulaarsetele leibkondade seeriatele. Majapidamises kasutatavad modulaarautomaadid tehakse tavaliselt materjalide ja tehnoloogiate hinna maksimaalse vähendamisega. On kindlasti kriitiline, et nad suletaksid kaare poole 1/3 poolperioodist. Teisisõnu, kuni kaar jõudis apogeele ja ei tekitanud tõsist kahju püstolikele. Lisaks ei kasutata näitajate B ja C majapidamises kasutatavat modulaarset automaatika, kui võivad tekkida väga lühikesed voolud.
Tööstusarjade modulaarautomaatidel on 1 (esimene) klass vooluhulga piiramine. Omakorda on D, K ja Z omadustega modulaarse automaatse leibkonna seeria tavaliselt ka 1. klass. Selliseid masinaid kasutatakse seal, kus esineb suuri lühisevoolu ained. Nendel masinatel on sama kaare väljalülitamise põhimõte kui majapidamises kasutatavate modulaarsete masinate omadused B ja C. Kuid sellised masinad tehakse ilma odavamate materjalide ja tootmistehnikate poolest, sageli on need suuremad. Seega saavad nad vastu pidada kõrgele lühisevoolule kahjustusteta. Teiste sõnadega, sellistel automaatitel on nimiväärtuste läbilaskevõime mitu korda kõrgem kui näitajate B ja C omamaiste automaatsete seeria süsteemide puhul. Tegelikult on need paremad, hoolimata sellest, et kaar kustutamiskiirus on sekundi murdosas aeglasem.
Võite lugeda artikleid samadel teemadel pealkirja all Automation and Protection
Kaitselüliti valik: elektrimasinate tüübid ja omadused
Kindlasti paljud meist mõtlesid, miks lülitid nihkuvad elektrilöögi ajal aegunud kaitsmed nii kiiresti? Nende kasutuselevõtu tegevus on õigustatud mitmete väga veenvate argumentidega.
Masin lülitab peaaegu koheselt talle usaldatud liini, mis välistab juhtmestiku ja võrgutoitega varustuse kahjustumise. Pärast väljalülitamist saab filtri kohe taaskäivitada, ilma ohutusseadist välja vahetamata. Lisaks sellele on võimalik osta sellist kaitset, mis ideaaljuhul vastab teatud tüüpi elektriseadmete ajaloolistele andmetele.
Selleks, et lülitada kaitselüliti õigesti välja, on vaja mõista seadmete liigitust. Te peate teadma, millised parameetrid peaksid pöörama suurt tähelepanu. Selle väärtusliku teabe leiate meie poolt välja pakutud artiklist.
Vooluahela klassifikatsioon
Kaitselülitid valitakse tavaliselt nelja peamise parameetri järgi: nimiväljundvõimsus, pooluste arv, ajavoolu tunnus, nimivoolu vool.
Parameeter # 1. Hindatud purunemisvõime
See tunnus näitab lubatavat lühisvoolu (SC), mille juures lüliti töötab, ja lülitades ahela välja, vabastage juhtmed ja sellega ühendatud seadmed. Selle parameetri järgi jagatakse kolme tüüpi automaadid: 4,5 kA, 6 kA, 10 kA.
- Automaatne 4,5 kA (4500 A) kasutatakse erasektori elamute energiavõrkude kahjustuste välistamiseks. Aluskaabli alalisvoolu juhtmestiku vastupanu on ligikaudu 0,05 Ohm, mis annab praeguse piirangu ligikaudu 500 A.
- 6 kA (6000 A) seadmeid kasutatakse elamuehituse kaitsmiseks lühisest, avalikes kohtades, kus liinide vastupidavus võib ulatuda 0,04 oomi, mis suurendab lühise kuni 5,5 kA.
- Lülitid 10 kA (10 000 A) jaoks kasutatakse elektriseadmete kaitsmiseks tööstuslikuks kasutamiseks. Lähtematerjali lähedal asuvas lühis võib esineda kuni 10 000 A voolu.
Enne kui valida kaitselüliti optimaalne modifikatsioon, on oluline mõista, kas lühisekaitse vool on võimalik üle 4,5 kA või 6 kA?
Seadme väljalülitamine toimub seadistatud lühise ajal. Kõige sagedamini kasutatakse 6000A kaitselülitid kodustele vajadustele. Mudeleid 4500A ei kasutata tänapäevaste elektrivõrkude kaitsmiseks ja mõnedes riikides on nende kasutamiseks keelatud.
Kaitselüliti töö on kaitsta juhtmestikku (mitte seadmeid ja kasutajaid) lühistest ja isolatsiooni sulatamisest, kui vool ületab nimiväärtusi.
Parameeter # 2. Postide arv
See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).
See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).
Ühepoolusega masinate omadused
Unipolaarse tüübi lüliti on automaatmasina kõige lihtsam muutmine. See on mõeldud üksikute ahelate, samuti ühefaasilise kahefaasilise kolmefaasilise juhtme, kaitsmiseks. Kaitselüliti konstruktsiooniga on võimalik ühendada kaks juhtmest - toitejuhe ja väljundvoolukanal.
Selle seadme klassi funktsioonid hõlmavad ainult traadi kaitset tulekahju eest. Juhtme neutraal asetseb nullibussi juures, möörates seega kaitselülitit, ja maandusjuhe on maasse eraldi ühendatud.
Üheposalaline automaat ei täida sisendfunktsiooni, sest kui see on sunnitud lahti ühendama, on faasiliin katkenud ja neutraal on ühendatud pingeallikaga, mis ei anna 100% garantii kaitsele.
Bipolaarsete lülitite omadused
Kui pinge võrgukaablit tuleb täielikult lahti ühendada, kasutage kahesuunalist masinat. Seda kasutatakse sisendina, kui lühise või võrgu rikete ajal on kõik elektrijuhtmed üheaegselt pingestatud. See võimaldab teil õigeaegselt tööd teha, ketid moderniseerida, on täiesti ohutu.
Kandke bipolaarseid masinaid juhtudel, kui ühefaasilise elektriseadme jaoks on vaja eraldi lülitit, näiteks veesoojendit, boilerit, tööpinki.
Ühendage masin kaitstud seadmega, kasutades 4 juhtmest, millest kaks on toitejuhtmed (üks neist on otse võrguga ühendatud ja teine annab toitejuhtme jumperiga) ja kaks väljundvoolu, mis vajavad kaitset, ja need võivad olla 1-, 2-, 3-juhtmeline.
Pingelülitite kolmepunktilise modifikatsiooniga
Kolmefaasilise 3-või 4-juhtmeta võrgu kaitsmiseks kolmepoolsete masinate abil. Need sobivad ühendamiseks vastavalt tärnitüübile (keskkaabel jääb kaitseta ja faasijuhtmed on ühendatud postidega) või kolmnurk (keskjuhtmest puudu).
Õnnetusjuhtumi korral mõnel joonel muudavad teised kaks ise.
Kolmeosaline kaitselüliti on sisendiks ja ühine kõigi kolmefaasiliste koormuste puhul. Elektrilöögi saamiseks kasutatakse sageli tööstuslikku modifikatsiooni.
Mudelile on ühendatud kuni 6 juhtmest, millest 3 on kolmefaasilise toitevõrgu faasijuhtmega. Ülejäänud kolm on kaitstud. Need esindavad kolme ühefaasilist või ühte kolmefaasilist juhtmestikku.
Neljafaasiline automaatne kasutamine
Selleks, et kaitsta kolme-, neljafaasilist elektrivõrku, näiteks staari põhimõttel ühendatud võimsat mootorit, kasutatakse neljafaasilist automaati. Seda kasutatakse kolmefaasilise neljajuhtmelise võrgu sisendlülitiga.
Masina kehasse on võimalik ühendada kaheksa traati, millest neli on elektrivõrgu faasijuhtmed (millest üks on neutraalne) ja neli on väljastpoolt tulevad juhtmed (3 faasi ja 1 neutraalne).
Parameeter # 3. Ajavoolu iseloomustus
AB-l võib olla sama koormusvõimsuse näitaja, kuid seadmete elektrienergia tarbimise omadused võivad olla erinevad. Võimsustarve võib olla ebaühtlane, olenevalt tüübist ja koormusest, seadme sisselülitamisest, seadme väljalülitamisest või pidevast töötamisest.
Võimsuse kõikumine võib olla üsna märkimisväärne ja nende muutuste ulatus - lai. See toob kaasa masina seiskumise seoses nimivoolu ülemkogusega, mida loetakse võrgu valeks lahutamiseks.
Selleks, et vältida kaitseseadise otstarbekamat kasutamist, kui mitte-hädaolukorra standardmuudatusi (voolu suurenemine, võimsuse muutus) kasutatakse, kasutatakse teatud ajavoolu omadustega automaati (VTH). See võimaldab samade praeguste parameetritega lülitite kasutamist meelevaldsete lubatud koormustega ilma valede katkestusteta.
BTX näitab, millal lüliti töötab ja millised näitavad masina voolu- ja alalisvoolu suhet.
Iseloomuliku B masinate tunnused
Määratud karakteristikuga automaatne lülitub välja 5-20 sekundi jooksul. Praegune indikaator on 3-5 masina nominaalset voolu. Neid muudatusi kasutatakse, et kaitsta aheldusi, mis söövad kodumajapidamises kasutatavaid standardseadmeid.
Kõige sagedamini kasutatakse seda mudelit, et kaitsta korterite, eramajade juhtmeid.
Iseloomulik C - tööpõhimõtted
Nomenklatuuri tähistusega C automaatne seade on välja lülitatud 1-10 sekundi jooksul 5-10 tunnise vooluga.
Nad kasutavad selle grupi lülitite kõiki valdkondi - igapäevaelus, ehituses, tööstuses, kuid need on kõige nõudlikumad korterite, majade ja eluruumide elektrilise kaitse valdkonnas.
D-märgiga lülitite kasutamine
D-klassi masinaid kasutatakse tööstuses ja neid esindavad kolme- ja neljapostilised modifikatsioonid. Neid kasutatakse võimsate elektrimootorite ja erinevate 3-faasiliste seadmete kaitsmiseks. AV-i reageerimisaeg on 10-10 sekundit vooluga, mis on korduv 10-14, mis võimaldab seda tõhusalt kasutada erinevate juhtmestike kaitsmiseks.
Võimsad tööstusmootorid töötavad ainult AB-ga, millel on iseloomulik D.
Parameeter # 4. Hindatud töövool
Kokku on automaattites 12 muudatust, mis erinevad arvestusliku töövoolu - 1A, 2A, 3A, 6A, 10A, 16A, 20A, 25A, 32A, 40A osas. Parameeter vastutab automaadi töö kiiruse eest, kui vool ületab nominaalsuuruse.
Määratud omaduse lüliti valimine tehakse, võttes arvesse elektrijuhtmete võimsust, lubatud voolu, mida juhtmestik normaalses režiimis suudab taluda. Kui praegune väärtus on teadmata, määratakse see kindlaks valemite abil, kasutades traadi osa andmeid, selle materjali ja paigaldamismeetodit.
Automaatne 1A, 2A, 3A kasutatakse väikese vooluga ahelate kaitsmiseks. Need sobivad elektrienergia tarnimiseks vähesele arvule seadmetele nagu lambid või lühtrid, väikese võimsusega külmikud ja muud seadmed, mille koguvõimsus ei ületa masina võimekust. Lüliti 3A on tööstuses efektiivselt kasutatav, kui teete kolmnurga kolmefaasilise ühenduse.
Lülitite 6A, 10A, 16A puhul on lubatud kasutada elektrienergiat üksikutele vooluahelatele, väikestele ruumidele või korteritele. Neid mudeleid kasutatakse tööstuses ja nende abil antakse neile elektromehaaniliste jõudude, solenoide, kütteseadmete ja eraldi liiniga ühendatud keevitusseadmete võimsust.
Kolme-, neljapostiline automaat 16A kasutatakse kolmefaasilise võimsuse skeemi sisendina. Tootmises eelistatakse D-kõvera instrumente.
Masinaid 20A, 25A, 32A kasutatakse kaasaegsete korterite juhtmete kaitsmiseks, nad suudavad anda elektrit pesumasinatele, kütteseadmetele, elektriküttele ja muudele suure võimsusega seadmetele. Mudelina 25A kasutatakse sisendautomaadina.
Lülitid 40A, 50A, 63A kuuluvad suure võimsusega seadmete klassi. Neid kasutatakse elektri tootmiseks suure võimsusega seadmetes igapäevaelus, tööstuses, tsiviilehituses.
Kaitselülitite valik ja arvutamine
AB tunnuste tundmine võimaldab määrata, milline masin sobib konkreetseks otstarbeks. Enne optimaalse mudeli valimist tuleb siiski teha mõningaid arvutusi, mille abil saab täpselt määrata soovitud seadme parameetrid.
Samm # 1. Masina võimsuse kindlaksmääramine
Masina valimisel on oluline arvestada ühendatud seadmete koguvõimsusega.
Näiteks vajate masinat köögiseadmete ühendamiseks toiteallikaga. Oletame, et kohvimasin (1000 W), külmik (500 W), ahi (2000 W), mikrolaineahi (2000 W), elektriveekann (1000 W). Koguvõimsus on 1000 + 500 + 2000 + 2000 + 1000 = 6500 (W) või 6,5 kV.
Kui vaatate elektriühenduste võimsuse automaatlauda, pidage meeles, et standardse juhtme pinge elamistingimustes on 220 V, siis sobib ühepositsiooniline või kahepositsiooniline automaatne 32A, mille koguvõimsus on 7 kW.
Tuleb arvestada, et võib osutuda vajalikuks suur energiatarve, sest töö ajal võib olla vajalik ühendada muid elektriseadmeid, mida algselt ei võetud arvesse. Selle olukorra prognoosimiseks kasutatakse kogutarbimise arvutamisel korrutustegurit.
Näiteks lisades täiendavaid elektriseadmeid, oli vaja 1,5 kW võimsust. Siis peate võtma koefitsiendiga 1,5 ja korrutama selle arvutatud võimsusega.
Arvutustes on mõnikord soovitatav kasutada vähendustegurit. Seda kasutatakse juhul, kui mitme seadme samaaegne kasutamine on võimatu. Oletame, et kogu elektrijuhtmestik köögiks oli 3,1 kW. Siis on vähendustegur 1, kuna võetakse arvesse samaaegselt ühendatud seadmete minimaalset arvu.
Kui mõnda seadet ei saa teistega ühendada, siis on vähendusteguriks väiksem kui üks.
Samm # 2. Masina nimivõimsuse arvutamine
Nimivõimsus on võimsus, mille korral juhtmestik ei ole lahti ühendatud. See arvutatakse järgmise valemi abil:
kus M on võimsus (W), N on elektrivõrgu pinge (Volt), CT on vool, mis võib masinast läbi minna (Ampere), on faasi nihke ja pinge nurga väärtust saava nurga kooseinus. Koosinusväärtus on tavaliselt 1, kuna praeguse ja pingefaasi vahel pole praktiliselt mingit nihet.
Valemist väljume ST:
Võimsus, mille oleme juba määranud ja võrgu pinge on tavaliselt 220 volti.
Kui koguvõimsus on 3,1 kW, siis
Saadud vool on 14 A.
Kolmasfaasilise koormuse arvutamiseks kasutatakse sama valemit, kuid võetakse arvesse nurgelpiiri, mis võib ulatuda suurte väärtustega. Tavaliselt ühendatud seadmes on nad loetletud.
3. samm. Rated current calculation
Nimivoolu arvutamiseks võib olla juhtmestiku dokumentatsioon, kuid kui see ei ole, siis määratakse see vastavalt juhtme omadustele. Arvutamiseks on vaja järgmisi andmeid:
- juhi läbilõikepindala;
- elamiseks kasutatav materjal (vask või alumiinium);
- munemise viis.
Elutingimustes asub tavaliselt juhtmestik seina sees.
Vajalike mõõtmiste tegemiseks arvutatakse ristlõikepindala:
Valemil D on juhtme läbimõõt (mm),
S on juhi läbilõikepindala (mm 2).
Järgmiseks kasutage allolevat tabelit.
Võttes arvesse saadud andmeid, valime automaatvoolu töövoolu ja selle nimiväärtuse. See peab olema võrdne või väiksem kui töövool. Mõnel juhul on lubatud kasutada masinaid, mille nominaalvõimsus on suurem kui juhtmestiku tegelik vool.
Samm # 4. Ajavoolu omaduste kindlaksmääramine
BTXi korrektseks tuvastamiseks tuleb arvesse võtta ühendatud koormuste algusvooge. Vajalikud andmed leiate alltoodud tabelist.
Tabeli kohaselt saate seadme sisselülitamise hetkel (amprites) kindlaks määrata aja, mille jooksul praegune piirang taastub.
Näiteks kui võtate 1,5 kW võimsusega elektrilise lihajahutusega, arvutage tabelist selle töövool (see on 6,81 A) ja võttes arvesse käivitusvoolu (kuni 7 korda) mitmekordistavat, saadakse praegune väärtus 6,81 * 7 = 48 (A). Selle jõu voog voolab sagedusega 1-3 sekundit.
Arvestades B klassi VTK graafikuid, näete, et kui ülekoormus on, töötab kaitselüliti esimesel sekundil pärast lihuvõtme käivitamist. On ilmselge, et selle seadme mitmesus vastab klassile C, seega tuleb elektrilise lihumajaga töötamise tagamiseks kasutada masina C-tunnust.
Kodumajapidamisvajaduste jaoks kasutavad tavaliselt lülitid, mis vastavad B, C ja B omadustele. Suurte mitmikvoolude (mootorid, toiteplokid jne) seadmete tööstuses luuakse kuni 10 korda voolutugevus, mistõttu on soovitatav kasutada seadme D-modifikatsioone. Siiski tuleks arvestada selliste seadmete võimsust ja käivitusvoolu kestust.
Standardsed automaatlülitid erinevad tavapärasest, kuna need on paigaldatud eraldi lülitidesse. Seadme funktsioonide hulka kuulub ka ahela kaitsmine ootamatute võimsusjõudude, elektrienergia katkestuste eest terves või kindlas osas võrgust.
Kasulik video teema kohta
Video # 1: AB valimine jooksva iseloomuga ja praeguse arvutuse näide
Video # 2: nimivoolu AB arvutamine
Masinad, mis on kinnitatud maja või korteri sissepääsu juures. Need asuvad tugevates plastkastides. Võttes arvesse kaitselülitite põhiomadusi ja õigeid arvutusi, võite selle seadme jaoks valida õigesti.
Kaitselülitite peamised tehnilised omadused
Praktilises rakenduses on oluline mitte ainult teada voolukatkestite omadused, vaid ka mõista, mida need tähendavad. Selle lähenemisviisi abil saate otsustada enamiku tehniliste probleemide üle. Vaatame, mida mõeldakse etiketil märgitud või muude parameetritega.
Kasutatud lühend.
Märgistusseadmed sisaldavad kogu vajalikku teavet, mis kirjeldab kaitselülitite põhiomadusi (edaspidi AB). Mida nad mõtlevad, selgitatakse allpool.
Ajavoolu tunnus (BTX)
Selle graafilise kuva abil on võimalik saada tingimuste visuaalne kuju, mille alusel aktiveeritakse vooluahela lülitamise mehhanism (vt joonis 2). Graafikul näitab vertikaalkaugus AB-i aktiveerimiseks vajalikku aega. Horisontaalne skaala näitab suhet I / In.
Joon. 2. Kõige tavalisemate automaattiitrite praeguste omaduste graafiline kuva.
Lubatav ülekoormus määrab ajavoolu omaduste tüübi, mis vabastatakse seadmetes, mis toodavad automaatset väljalülitamist. Vastavalt kehtivatele eeskirjadele (GOST P 50345-99) on igale tüübile määratud tähis (ladina tähtedega). Lubatav ülejääk määratakse koefitsiendiga k = I / In iga tüübi kohta standardväärtused (vt joonis 3):
- "A" - maksimaalne - kolm korda suurem;
- "B" - 3 kuni 5;
- "C" - 5-10 korda korrapärasem;
- "D" - 10-20 korda üleliigne;
- "K" - 8-14;
- "Z" - veel 2-4 töötajat.
Pange tähele, et see diagramm kirjeldab täielikult solenoidi ja termoelemendi aktiveerimise tingimusi (vt joonis 4).
Solenoidi ja termoelemendi töötamise tsoonide graafik
Ülaltoodu põhjal võime kokku võtta, et AB-i peamine kaitsetunnus on tingitud ajavoolu sõltuvusest.
Tüüpiliste ajavooluomaduste loend.
Olles otsustanud märgistamise üle, jätkame kaalumist erinevatele seadmetele, mis vastavad kindlale klassile sõltuvalt omadustest.
Kaitselülitite laua ajavoolu omadused
Tüüp "A" iseloomulik
Selle kategooria termokaitse AB aktiveeritakse, kui vooluahela suhe nominaalseks (I / In) ületab 1,3. Nendes tingimustes toimub sulgemine 60 minuti pärast. Kuna nimivool on veelgi ületatud, vähendatakse reisi aega. Elektromagnetiline kaitse aktiveerub, kui nominaalne väärtus kahekordistub, vastamissagedus on 0,05 sekundit.
See tüüp on loodud ahelates, mis ei kuulu lühiajalise ülekoormuse alla. Näiteks võime võtta pooljuhtseadiste ahelad nende ebaõnnestumise korral, praegune ületamine on ebaoluline. Seda tüüpi ei kasutata igapäevaelus.
Funktsioon "B"
Selle tüübi erinevus eelmisest on operatsiooni voolus, see võib standardist ületada kolm kuni viis korda. Sellisel juhul aktiveeritakse solenoidmehhanism viiekordse koormusega (pinge väljalülitusaeg - 0,015 s), termoelement - kolmekordne (mitte rohkem kui 4-5 sekundit, vajadus välja lülitada).
Selliste seadmete tüübid on leidnud rakenduse võrkudes, mille jaoks suured pingevoolud pole iseloomulikud, näiteks valgustusahelate jaoks.
S201, mille on valmistanud ABB ajavoolu omadustega B
Iseloomulik "C"
See on kõige tavalisem tüüp, selle lubatav ülekoormus on suurem kui kahe eelmise tüübi puhul. Kui nominaalset režiimi ületatakse viis korda, aktiveerub termoelement, see on ahel, mis lülitab toiteallika välja pooleteise sekundi jooksul. Solenoidmehhanism aktiveeritakse, kui ülekoormus ületab normi kümnekordselt.
AB andmed on kavandatud kaitsma elektrilist vooluringi, milles võib esineda mõõdukas käivoolu, mis on tüüpiline leibkonna võrgule, mida iseloomustab segakoormus. Seadme ostmine kodus on soovitatav valida see vorm.
Triplex Legrandi masin
Iseloomulik "D"
Seda tüüpi AB-d iseloomustavad suured ülekoormuse omadused. Nimelt kümnekordne ülemäärane norm thermoelement ja kakskümmend kordne jaoks solenoid.
Kandke selliseid seadmeid suurel algusvooluga ahelatel. Näiteks asünkroonsete elektrimootorite käivitusseadmete kaitsmiseks. Joonisel 9 on näha selle rühma kaks instrumenti (a ja b).
Joonis 9. a) BA51-35; b) BA57-35; c) BA88-35
Iseloomulik "K"
Sellistel AV-del on solenoidi mehhanismi aktiveerimine võimalik, kui praegune koormus ületatakse 8 korda ja see tagatakse juhul, kui on 12-kordne normaalne režiim ülekoormus (kaheksateistkordne konstantse pinge korral). Koorma väljalülitamise aeg ei ületa 0,02 sekundit. Termoelemendi puhul on selle aktiveerimine võimalik tavalisest režiimis üle 1,05.
Rakendusala - induktiivkoormusega ahelad.
Iseloomulik "Z"
Seda tüüpi eristab väike lubatud nimivoolu ületav väärtus, minimaalne piir on standardi kaks korda suurem, maksimaalne on neli korda. Termoelemendi tööparameetrid on samad, mis AB-le iseloomuliku K-ga.
Seda alamliiki kasutatakse elektrooniliste seadmete ühendamiseks.
Iseloomulik "MA"
Selle grupi eripära on see, et koorma lahutamiseks termoelementi ei kasutata. See tähendab, et seade kaitseb ainult lühistest, on elektrimootori ühendamine üsna piisav. Joonis 9 näitab sellist kohanemist (c).
Nominaalne töövool
See parameeter kirjeldab tavapärase töö maksimaalset lubatud väärtust, kui see on ületatud, aktiveeritakse koorma lastav süsteem. Joonisel 1 on näidatud, kus see väärtus kuvatakse (IEK tooted on näide).
Regulaarne töö voolab ringi
Termilised parameetrid
Termin tähistab termoelemendi töötingimusi. Neid andmeid saab saada vastavast ajagraafikust.
Ultimate breaking capacity (PKS).
See tähis tähendab maksimaalset lubatavat koormust, mille korral seade suudab kontuuri avada ilma jõudlust kaotamata. Joonisel 5 on see märgistus tähistatud punase ovaalsega.
Joon. 5. Seadme tootja Schneider Electric
Praegune piirkategooria
Seda terminit kirjeldatakse AB-i võime lahti ühendada enne, kui selle lühisevool jõuab maksimumini. Kohandused on saadaval kolme liigi praeguse piiranguga, olenevalt laadimisaja väljalasetest:
- 10 ms ja rohkem;
- 6 kuni 10 ms;
- 2,5-6 ms.
Seega, mida suurem kategooria, seda väiksem on elektrijuhtmete kuumusega kokkupuude, mistõttu väheneb selle süüte oht. Joonisel 6 on see kategooria ringiga punane.
Tähis BA47-29 tähistab praeguse piirangu klassi
Pidage meeles, et esimese kategooria AB-l ei pruugi olla asjakohast märgistust.
Väike elu, kuidas valida kodus õige lüliti
Pakume mõningaid üldisi soovitusi:
- Tuginedes kõigile ülalnimetatutele, peaksime valima AB-ga ajahetke "C".
- Standardsete parameetrite valimisel tuleb kaaluda kavandatud koormust. Arvutamiseks tuleks kasutada Ohmi seadust: I = P / U, kus P on ahela võimsus, U on pinge. Voolutugevuse (I) arvutades valime nominaalse AB vastavalt tabelile, mis on kujutatud joonisel 10. Joonis 10. Diagramm AB valimiseks sõltuvalt koormusvoolust
Kirjutame, kuidas ajakava kasutada. Näiteks, koormusvoolu arvutamisel saime tulemuse 42 A. Teil tuleb valida automaat, kus see väärtus asub rohelises tsoonis (tööpiirkonnas), siis see on 50 A. Valikus peaks arvestama ka seda, milline on praegune tugevus juhtmestiku jaoks.. Selle väärtuse põhjal on lubatud masin valida, tingimusel et koormusvool on väiksem kui juhtmestiku arvutuslik vool.
Circuit Breakers tehnilised andmed
Tere, kallid lehe lugejad http://elektrik-sam.info.
Voolukatkestite spetsifikatsioonid - Järgmise artikli teema kohta voolukatkestidest voolukatkestite, RCD-de, difavtomaty - üksikasjaliku juhendi.
Eelmises artiklis käsitleti üksikasjalikult automaatide põhinäitajaid - nimivoolu ja ajavoolu omadusi.
Jätkame tehniliste spetsifikatsioonide ülevaatamist, tuletades meelde, et need on tavaliselt näidatud masina esiosa külge.
Nimipinge, V - vooluahela kaudu voolava voolu või voolu pinge, mille korral selle tehnilised näitajad on normaliseeritud.
Juhtus on joonistatud. Tavaliselt on näidatud üks või mitu nimipinge väärtust, näiteks 230 V ja 380 V (või 400 V). Universaalsete kaitselülitite puhul on nimipöörleva vahelduvpinge väärtused tähistatud sümboliga
DC - sümboliga -.
Minge järgmiste tunnuste juurde:
Maksimaalne lülitusvõimsus on vooluahela lühisvoolude piirväärtus, mille läbimise ajal automaatne seade töötab. Ie see on maksimaalne võimalik lühisvool, kusjuures kaitselüliti suudab lahti ühendada selle kaitstud ahelaga ja jääb kasutatavaks.
Enamasti kasutatakse automaatmonteeringuid, mille lühisvoolu limiit on 4500 amprit, 6000 amprit ja 10 000 amprit. Näidatud masina kehast ristkülikus.
Kui vahelduvvoolu ja alalisvoolu vahelduvvoolumissagedus erineb üksteisest, on need näidatud vahelduvvoolu ja alalisvoolu tähtedega tähistatud kahes külgnevas ristkülikus, näiteks: 10 000
Lühise voolu suurus sõltub elektrivõrgu joone takistusest ja vastupanu omakorda sõltub paljudest teguritest: materjalist, millest juhtmestik on tehtud, liinide pikkus, ühenduste kvaliteet, trafo alajaama lähedus.
Kui juhtmestik on vana ja lagunenud, on juht konstrueeritud alumiiniumist traadist (vana elamufondi majades ja külades asuvates majades), siis võite kasutada masinaid, mille piirmälu võimsus on 4500 A.
Kui juhtmestik on valmistatud vasest (vasktraat on vähem vastupidav ja suurem kui alumiiniumist), on juhtmestik suhteliselt uus, maja on hiljuti tellitud, trafo alajaam on lähedal, siis kasvab eeldatav lühisevool.
Praegu on modulaarseadmed, mille läbilaskevõime on 4500 A, haruldane. Igapäevaelus kasutatakse sageli 6000A lõhkemisvõimsusega automaate. Kui trafo alajaam asetseb lähiümbruse lähedal ja maja on uus, siis on soovitatav suurendada voolukatkestite murdmisvõimet, vähemalt sisendkaitselülitit ja kasutada 10 kA katkemisvõimet.
Kui teil on uus hoone, näete sisendautomaadi puhul maksimaalset lülitusvõimet, kuna need on paigaldatud vastavalt projekti arvutatud väärtusele.
Lubage mul teile meelde tuletada, et elektriliste kaitseseadiste tehniliste omaduste tundmine võimaldab põhjalikku ja pädevat lähenemist nende valikule, kirjutasin sellest üksikasjalikult artiklist Kuidas valida automaatkaitselülitid, RCDd, di-phontomatics.
Järgmine tunnus on praegune piirklass.
Oluline parameeter, mis mõjutab otseselt elektrijuhtmete ohutust, töökindlust ja vastupidavust. Kaitselüliti praegune piirang on kaitselülituse võimsuse väljalülitamine, enne kui lühisvool jõuab maksimaalse väärtuseni. See võimaldab lühiajalistel elektrijuhtmestiku isolatsioonidel hoida soojuse suurendamisel, vähendades seeläbi tulekahjuohtu.
Voolutugevuse klass määratakse aja võrra, alates voolukatkesti toitekontaktide avanemisest kuni kaarekraani elektrilise kaare täieliku väljaheitmise hetkeni. Praeguse limiidi on kolm klassi: 1, 2, 3.
Kõrgeim klass 3. Voolu piiramise klassi automaadi kaare väljasuremise aeg toimub 2,5... 6 ms, 2. klassis - 6... 10 ms, klass 1 - rohkem kui 10 ms. Praeguse limiidi klass on näidatud musta ruudus piirväärtuste vahetamise võimsuse väärtuse all. I klassi voolu piiravad masinad pole märgistatud.
Samuti võib kaitselüliti puhul näidata sellise elektrivõrgu nimisagedust, mille jaoks see on projekteeritud. Nagu ma juba ütlesin, on automaadi põhiomadused disainitud ümbritseva õhu temperatuuril 30 ° C. Kui see on erinev, siis on see näidatud ka masina kehal.
Kui kaitseaste erineb IP20-st, on see ka juhtumil näidatud. Kui kaitselüliti juhtmed on ette nähtud ainult neutraaltraadi ühendamiseks, on need tähistatud ladina tähega N. Ka mõnel juhul paigaldatakse automaatselt montaaži diagramm DIN-liistule.
Vaadake üksikasjalikke videovalvurite spetsifikatsioone
Kaitselülitite peamised omadused, konstruktsioon ja tööpõhimõte, demonteeriti järgmises artiklis, kus käsitleme kaitselülitite juhtmestikku.
Telli uudised ja kursis! Seal on palju huvitavaid asju.
Soovitan lugeda teemal: