Kaitselüliti valik: elektrimasinate tüübid ja omadused

  • Postitamine

Kindlasti paljud meist mõtlesid, miks lülitid nihkuvad elektrilöögi ajal aegunud kaitsmed nii kiiresti? Nende kasutuselevõtu tegevus on õigustatud mitmete väga veenvate argumentidega.

Masin lülitab peaaegu koheselt talle usaldatud liini, mis välistab juhtmestiku ja võrgutoitega varustuse kahjustumise. Pärast väljalülitamist saab filtri kohe taaskäivitada, ilma ohutusseadist välja vahetamata. Lisaks sellele on võimalik osta sellist kaitset, mis ideaaljuhul vastab teatud tüüpi elektriseadmete ajaloolistele andmetele.

Selleks, et lülitada kaitselüliti õigesti välja, on vaja mõista seadmete liigitust. Te peate teadma, millised parameetrid peaksid pöörama suurt tähelepanu. Selle väärtusliku teabe leiate meie poolt välja pakutud artiklist.

Vooluahela klassifikatsioon

Kaitselülitid valitakse tavaliselt nelja peamise parameetri järgi: nimiväljundvõimsus, pooluste arv, ajavoolu tunnus, nimivoolu vool.

Parameeter # 1. Hindatud purunemisvõime

See tunnus näitab lubatavat lühisvoolu (SC), mille juures lüliti töötab, ja lülitades ahela välja, vabastage juhtmed ja sellega ühendatud seadmed. Selle parameetri järgi jagatakse kolme tüüpi automaadid: 4,5 kA, 6 kA, 10 kA.

  1. Automaatne 4,5 kA (4500 A) kasutatakse erasektori elamute energiavõrkude kahjustuste välistamiseks. Aluskaabli alalisvoolu juhtmestiku vastupanu on ligikaudu 0,05 Ohm, mis annab praeguse piirangu ligikaudu 500 A.
  2. 6 kA (6000 A) seadmeid kasutatakse elamuehituse kaitsmiseks lühisest, avalikes kohtades, kus liinide vastupidavus võib ulatuda 0,04 oomi, mis suurendab lühise kuni 5,5 kA.
  3. Lülitid 10 kA (10 000 A) jaoks kasutatakse elektriseadmete kaitsmiseks tööstuslikuks kasutamiseks. Lähtematerjali lähedal asuvas lühis võib esineda kuni 10 000 A voolu.

Enne kui valida kaitselüliti optimaalne modifikatsioon, on oluline mõista, kas lühisekaitse vool on võimalik üle 4,5 kA või 6 kA?

Seadme väljalülitamine toimub seadistatud lühise ajal. Kõige sagedamini kasutatakse 6000A kaitselülitid kodustele vajadustele. Mudeleid 4500A ei kasutata tänapäevaste elektrivõrkude kaitsmiseks ja mõnedes riikides on nende kasutamiseks keelatud.

Kaitselüliti töö on kaitsta juhtmestikku (mitte seadmeid ja kasutajaid) lühistest ja isolatsiooni sulatamisest, kui vool ületab nimiväärtusi.

Parameeter # 2. Postide arv

See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).

See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).

Ühepoolusega masinate omadused

Unipolaarse tüübi lüliti on automaatmasina kõige lihtsam muutmine. See on mõeldud üksikute ahelate, samuti ühefaasilise kahefaasilise kolmefaasilise juhtme, kaitsmiseks. Kaitselüliti konstruktsiooniga on võimalik ühendada kaks juhtmest - toitejuhe ja väljundvoolukanal.

Selle seadme klassi funktsioonid hõlmavad ainult traadi kaitset tulekahju eest. Juhtme neutraal asetseb nullibussi juures, möörates seega kaitselülitit, ja maandusjuhe on maasse eraldi ühendatud.

Üheposalaline automaat ei täida sisendfunktsiooni, sest kui see on sunnitud lahti ühendama, on faasiliin katkenud ja neutraal on ühendatud pingeallikaga, mis ei anna 100% garantii kaitsele.

Bipolaarsete lülitite omadused

Kui pinge võrgukaablit tuleb täielikult lahti ühendada, kasutage kahesuunalist masinat. Seda kasutatakse sisendina, kui lühise või võrgu rikete ajal on kõik elektrijuhtmed üheaegselt pingestatud. See võimaldab teil õigeaegselt tööd teha, ketid moderniseerida, on täiesti ohutu.

Kandke bipolaarseid masinaid juhtudel, kui ühefaasilise elektriseadme jaoks on vaja eraldi lülitit, näiteks veesoojendit, boilerit, tööpinki.

Ühendage masin kaitstud seadmega, kasutades 4 juhtmest, millest kaks on toitejuhtmed (üks neist on otse võrguga ühendatud ja teine ​​annab toitejuhtme jumperiga) ja kaks väljundvoolu, mis vajavad kaitset, ja need võivad olla 1-, 2-, 3-juhtmeline.

Pingelülitite kolmepunktilise modifikatsiooniga

Kolmefaasilise 3-või 4-juhtmeta võrgu kaitsmiseks kolmepoolsete masinate abil. Need sobivad ühendamiseks vastavalt tärnitüübile (keskkaabel jääb kaitseta ja faasijuhtmed on ühendatud postidega) või kolmnurk (keskjuhtmest puudu).

Õnnetusjuhtumi korral mõnel joonel muudavad teised kaks ise.

Kolmeosaline kaitselüliti on sisendiks ja ühine kõigi kolmefaasiliste koormuste puhul. Elektrilöögi saamiseks kasutatakse sageli tööstuslikku modifikatsiooni.

Mudelile on ühendatud kuni 6 juhtmest, millest 3 on kolmefaasilise toitevõrgu faasijuhtmega. Ülejäänud kolm on kaitstud. Need esindavad kolme ühefaasilist või ühte kolmefaasilist juhtmestikku.

Neljafaasiline automaatne kasutamine

Selleks, et kaitsta kolme-, neljafaasilist elektrivõrku, näiteks staari põhimõttel ühendatud võimsat mootorit, kasutatakse neljafaasilist automaati. Seda kasutatakse kolmefaasilise neljajuhtmelise võrgu sisendlülitiga.

Masina kehasse on võimalik ühendada kaheksa traati, millest neli on elektrivõrgu faasijuhtmed (millest üks on neutraalne) ja neli on väljastpoolt tulevad juhtmed (3 faasi ja 1 neutraalne).

Parameeter # 3. Ajavoolu iseloomustus

AB-l võib olla sama koormusvõimsuse näitaja, kuid seadmete elektrienergia tarbimise omadused võivad olla erinevad. Võimsustarve võib olla ebaühtlane, olenevalt tüübist ja koormusest, seadme sisselülitamisest, seadme väljalülitamisest või pidevast töötamisest.

Võimsuse kõikumine võib olla üsna märkimisväärne ja nende muutuste ulatus - lai. See toob kaasa masina seiskumise seoses nimivoolu ülemkogusega, mida loetakse võrgu valeks lahutamiseks.

Selleks, et vältida kaitseseadise otstarbekamat kasutamist, kui mitte-hädaolukorra standardmuudatusi (voolu suurenemine, võimsuse muutus) kasutatakse, kasutatakse teatud ajavoolu omadustega automaati (VTH). See võimaldab samade praeguste parameetritega lülitite kasutamist meelevaldsete lubatud koormustega ilma valede katkestusteta.

BTX näitab, millal lüliti töötab ja millised näitavad masina voolu- ja alalisvoolu suhet.

Iseloomuliku B masinate tunnused

Määratud karakteristikuga automaatne lülitub välja 5-20 sekundi jooksul. Praegune indikaator on 3-5 masina nominaalset voolu. Neid muudatusi kasutatakse, et kaitsta aheldusi, mis söövad kodumajapidamises kasutatavaid standardseadmeid.

Kõige sagedamini kasutatakse seda mudelit, et kaitsta korterite, eramajade juhtmeid.

Iseloomulik C - tööpõhimõtted

Nomenklatuuri tähistusega C automaatne seade on välja lülitatud 1-10 sekundi jooksul 5-10 tunnise vooluga.

Nad kasutavad selle grupi lülitite kõiki valdkondi - igapäevaelus, ehituses, tööstuses, kuid need on kõige nõudlikumad korterite, majade ja eluruumide elektrilise kaitse valdkonnas.

D-märgiga lülitite kasutamine

D-klassi masinaid kasutatakse tööstuses ja neid esindavad kolme- ja neljapostilised modifikatsioonid. Neid kasutatakse võimsate elektrimootorite ja erinevate 3-faasiliste seadmete kaitsmiseks. AV-i reageerimisaeg on 10-10 sekundit vooluga, mis on korduv 10-14, mis võimaldab seda tõhusalt kasutada erinevate juhtmestike kaitsmiseks.

Võimsad tööstusmootorid töötavad ainult AB-ga, millel on iseloomulik D.

Parameeter # 4. Hindatud töövool

Kokku on automaattites 12 muudatust, mis erinevad arvestusliku töövoolu - 1A, 2A, 3A, 6A, 10A, 16A, 20A, 25A, 32A, 40A osas. Parameeter vastutab automaadi töö kiiruse eest, kui vool ületab nominaalsuuruse.

Määratud omaduse lüliti valimine tehakse, võttes arvesse elektrijuhtmete võimsust, lubatud voolu, mida juhtmestik normaalses režiimis suudab taluda. Kui praegune väärtus on teadmata, määratakse see kindlaks valemite abil, kasutades traadi osa andmeid, selle materjali ja paigaldamismeetodit.

Automaatne 1A, 2A, 3A kasutatakse väikese vooluga ahelate kaitsmiseks. Need sobivad elektrienergia tarnimiseks vähesele arvule seadmetele nagu lambid või lühtrid, väikese võimsusega külmikud ja muud seadmed, mille koguvõimsus ei ületa masina võimekust. Lüliti 3A on tööstuses efektiivselt kasutatav, kui teete kolmnurga kolmefaasilise ühenduse.

Lülitite 6A, 10A, 16A puhul on lubatud kasutada elektrienergiat üksikutele vooluahelatele, väikestele ruumidele või korteritele. Neid mudeleid kasutatakse tööstuses ja nende abil antakse neile elektromehaaniliste jõudude, solenoide, kütteseadmete ja eraldi liiniga ühendatud keevitusseadmete võimsust.

Kolme-, neljapostiline automaat 16A kasutatakse kolmefaasilise võimsuse skeemi sisendina. Tootmises eelistatakse D-kõvera instrumente.

Masinaid 20A, 25A, 32A kasutatakse kaasaegsete korterite juhtmete kaitsmiseks, nad suudavad anda elektrit pesumasinatele, kütteseadmetele, elektriküttele ja muudele suure võimsusega seadmetele. Mudelina 25A kasutatakse sisendautomaadina.

Lülitid 40A, 50A, 63A kuuluvad suure võimsusega seadmete klassi. Neid kasutatakse elektri tootmiseks suure võimsusega seadmetes igapäevaelus, tööstuses, tsiviilehituses.

Kaitselülitite valik ja arvutamine

AB tunnuste tundmine võimaldab määrata, milline masin sobib konkreetseks otstarbeks. Enne optimaalse mudeli valimist tuleb siiski teha mõningaid arvutusi, mille abil saab täpselt määrata soovitud seadme parameetrid.

Samm # 1. Masina võimsuse kindlaksmääramine

Masina valimisel on oluline arvestada ühendatud seadmete koguvõimsusega.

Näiteks vajate masinat köögiseadmete ühendamiseks toiteallikaga. Oletame, et kohvimasin (1000 W), külmik (500 W), ahi (2000 W), mikrolaineahi (2000 W), elektriveekann (1000 W). Koguvõimsus on 1000 + 500 + 2000 + 2000 + 1000 = 6500 (W) või 6,5 kV.

Kui vaatate elektriühenduste võimsuse automaatlauda, ​​pidage meeles, et standardse juhtme pinge elamistingimustes on 220 V, siis sobib ühepositsiooniline või kahepositsiooniline automaatne 32A, mille koguvõimsus on 7 kW.

Tuleb arvestada, et võib osutuda vajalikuks suur energiatarve, sest töö ajal võib olla vajalik ühendada muid elektriseadmeid, mida algselt ei võetud arvesse. Selle olukorra prognoosimiseks kasutatakse kogutarbimise arvutamisel korrutustegurit.

Näiteks lisades täiendavaid elektriseadmeid, oli vaja 1,5 kW võimsust. Siis peate võtma koefitsiendiga 1,5 ja korrutama selle arvutatud võimsusega.

Arvutustes on mõnikord soovitatav kasutada vähendustegurit. Seda kasutatakse juhul, kui mitme seadme samaaegne kasutamine on võimatu. Oletame, et kogu elektrijuhtmestik köögiks oli 3,1 kW. Siis on vähendustegur 1, kuna võetakse arvesse samaaegselt ühendatud seadmete minimaalset arvu.

Kui mõnda seadet ei saa teistega ühendada, siis on vähendusteguriks väiksem kui üks.

Samm # 2. Masina nimivõimsuse arvutamine

Nimivõimsus on võimsus, mille korral juhtmestik ei ole lahti ühendatud. See arvutatakse järgmise valemi abil:

kus M on võimsus (W), N on elektrivõrgu pinge (Volt), CT on vool, mis võib masinast läbi minna (Ampere), on faasi nihke ja pinge nurga väärtust saava nurga kooseinus. Koosinusväärtus on tavaliselt 1, kuna praeguse ja pingefaasi vahel pole praktiliselt mingit nihet.

Valemist väljume ST:

Võimsus, mille oleme juba määranud ja võrgu pinge on tavaliselt 220 volti.

Kui koguvõimsus on 3,1 kW, siis

Saadud vool on 14 A.

Kolmasfaasilise koormuse arvutamiseks kasutatakse sama valemit, kuid võetakse arvesse nurgelpiiri, mis võib ulatuda suurte väärtustega. Tavaliselt ühendatud seadmes on nad loetletud.

3. samm. Rated current calculation

Nimivoolu arvutamiseks võib olla juhtmestiku dokumentatsioon, kuid kui see ei ole, siis määratakse see vastavalt juhtme omadustele. Arvutamiseks on vaja järgmisi andmeid:

  • juhi läbilõikepindala;
  • elamiseks kasutatav materjal (vask või alumiinium);
  • munemise viis.

Elutingimustes asub tavaliselt juhtmestik seina sees.

Vajalike mõõtmiste tegemiseks arvutatakse ristlõikepindala:

Valemil D on juhtme läbimõõt (mm),

S on juhi läbilõikepindala (mm 2).

Järgmiseks kasutage allolevat tabelit.

Võttes arvesse saadud andmeid, valime automaatvoolu töövoolu ja selle nimiväärtuse. See peab olema võrdne või väiksem kui töövool. Mõnel juhul on lubatud kasutada masinaid, mille nominaalvõimsus on suurem kui juhtmestiku tegelik vool.

Samm # 4. Ajavoolu omaduste kindlaksmääramine

BTXi korrektseks tuvastamiseks tuleb arvesse võtta ühendatud koormuste algusvooge. Vajalikud andmed leiate alltoodud tabelist.

Tabeli kohaselt saate seadme sisselülitamise hetkel (amprites) kindlaks määrata aja, mille jooksul praegune piirang taastub.

Näiteks kui võtate 1,5 kW võimsusega elektrilise lihajahutusega, arvutage tabelist selle töövool (see on 6,81 A) ja võttes arvesse käivitusvoolu (kuni 7 korda) mitmekordistavat, saadakse praegune väärtus 6,81 * 7 = 48 (A). Selle jõu voog voolab sagedusega 1-3 sekundit.

Arvestades B klassi VTK graafikuid, näete, et kui ülekoormus on, töötab kaitselüliti esimesel sekundil pärast lihuvõtme käivitamist. On ilmselge, et selle seadme mitmesus vastab klassile C, seega tuleb elektrilise lihumajaga töötamise tagamiseks kasutada masina C-tunnust.

Kodumajapidamisvajaduste jaoks kasutavad tavaliselt lülitid, mis vastavad B, C ja B omadustele. Suurte mitmikvoolude (mootorid, toiteplokid jne) seadmete tööstuses luuakse kuni 10 korda voolutugevus, mistõttu on soovitatav kasutada seadme D-modifikatsioone. Siiski tuleks arvestada selliste seadmete võimsust ja käivitusvoolu kestust.

Standardsed automaatlülitid erinevad tavapärasest, kuna need on paigaldatud eraldi lülitidesse. Seadme funktsioonide hulka kuulub ka ahela kaitsmine ootamatute võimsusjõudude, elektrienergia katkestuste eest terves või kindlas osas võrgust.

Kasulik video teema kohta

Video # 1: AB valimine jooksva iseloomuga ja praeguse arvutuse näide

Video # 2: nimivoolu AB arvutamine

Masinad, mis on kinnitatud maja või korteri sissepääsu juures. Need asuvad tugevates plastkastides. Võttes arvesse kaitselülitite põhiomadusi ja õigeid arvutusi, võite selle seadme jaoks valida õigesti.

Circuit Breaker Kategooriad: A, B, C ja D

Kaitselülitid on seadmed, mis vastutavad elektrivoolu kaitsmise eest suure vooluga kokkupuutest põhjustatud kahjustuste eest. Elektronide liiga tugev vool võib kahjustada kodumasinaid, samuti põhjustada kaabli ülekuumenemist järgneva tagasivoolu ja süttimisega. Kui liin ei ole aja jooksul pingestatud, võib see põhjustada tulekahju. Seepärast on elektripaigaldiseeskirjade (elektripaigaldustingimuste reeglid) nõuete kohaselt keelatud võrgu kasutamine, milles elektrikaitselülitid pole paigaldatud. AB-l on mitu parameetrit, millest üks on automaatse kaitselüliti ajavool. Selles artiklis selgitame A, B, C ja D kategooria kaitselülitite erinevust, mille kaitsmiseks kasutame neid võrke.

Võrgu kaitseseadmete tunnused

Ükskõik mis klassi kaitselüliti kuulub, on selle põhiülesanne alati sama - kiiresti tuvastada ülemäärase voolu välimus ja võrgu välja lülitada, enne kui kaabel ja liiniga ühendatud seadmed on kahjustatud.

Vooluhulgad, mis võivad võrgustikku olla ohtlikud, on jagatud kahte tüüpi:

  • Ülekoormuse voolud Nende välimus esineb enamasti tänu seadmete võrgu lisamisele, mille koguvõimsus ületab selle võimsuse, mille joon suudab taluda. Veel üks ülekoormuse põhjus on ühe või mitme seadme rike.
  • Lühisega põhjustatud ülekoormus. Lüli tekib, kui faas ja neutraaljuhid on omavahel ühendatud. Tavalises olekus on need koormus eraldi ühendatud.

Vooluahela seade ja tööpõhimõte - videos:

Ülekoormus

Nende suurus kõige sagedamini ületab automaatselt nominaalset väärtust, nii et sellise elektrivoolu läbimine mööda ringlussüsteemi, kui see ei kao liiga kaua, ei kahjusta liini. Sellega seoses ei ole antud juhul vajalik hetkeline pingestuse väljalülitamine, seepärast jõuab sageli sageli automaatselt elektrivool. Iga AB on kavandatud teatud elektrivoolu ületamiseks, milles see käivitub.

Kaitselüliti reageerimisaeg sõltub ülekoormuse suurusest: mõne normaali ületavusega võib kuluda tund või rohkem ja märkimisväärse ühe sekundi jooksul.

Võimsa koormuse mõjul vooluvuse katkestamiseks vastab soojuspaisumine, mis põhineb bimetallplaadil.

Seda elementi kuumutatakse võimsa voolu mõjul, see muutub plastiks, paindub ja põhjustab automaatse käivitumise.

Lühis voolud

Lühisülekandest põhjustatud elektronide voog ületab oluliselt kaitsevahendi väärtust, nii et viimane kohe käivitub, lülitades voolu välja. Lühise ja viivitamatu reaktsiooni tuvastamiseks vastutab elektromagnetiline vabastamine, mis on südamikuga solenoid. Viimane ülekoormus mõjutab koheselt lülitit, põhjustades selle liikumist. See protsess võtab paar sekundit.

Siiski on üks nüanss. Mõnikord võib ülekoormuse vool olla väga suur, kuid seda ei põhjusta lühis. Kuidas peaks aparatuur määrama nendevahelise erinevuse?

Video automaatlülitite valikulisusest:

Siinkohal jätkame sujuvalt põhiküsimusega, millele meie materjal on pühendatud. Nagu öeldud, on olemas mitmed AB klassid, mis erinevad ajahetkel iseloomuliku iseloomuga. Kõige tavalisemad neist, mida kasutatakse majapidamises elektrivõrkudes, on klasside B, C ja D seadmed. A-kategooria kaitselülitid on palju vähem levinud. Need on kõige tundlikumad ja neid kasutatakse täppisinstrumentide kaitsmiseks.

Nende seas erinevad praegused hetkeseadised. Selle väärtuse määrab voolu läbilaskevõime korduvus automaadi nimiväärtusele.

Kaitselülitite väljalülitusomadused

Selle parameetriga määratud AB-klass on tähistatud ladina tähega ja kinnitatakse seadme kehasse nimivoolule vastava numbri ees.

Vastavalt EMP kehtestatud klassifikatsioonile on kaitseautomaadid jagatud mitmesse kategooriasse.

MA tüüpi masinad

Selliste seadmete eripära on nendes termilise vabanemise puudumine. Selle klassi seadmed on paigaldatud elektrimootorite ja muude võimsate seadmete ühendussõlmesse.

Ülekoormuskaitse niisugustes liinides pakub ülekoormuslülitust, kaitseb kaitselüliti ainult ülekoormuslülitustest põhjustatud kahjustusi.

A-klassi seadmed

Nagu öeldud, on A-tüüpi masinatel kõige suurem tundlikkus. Ajavoolu karakteristikutega seadmete soojuslik vabastamine aeglustab sagedamini jõudlusega AB-d 30% võrra.

Elektromagnetiline väljalülituspähkel lülitab võrgu välja umbes 0,05 sekundi võrra, kui vooluahela elektrivool ületab nimiväärtust 100% võrra. Kui mingil põhjusel pärast elektrivoolu võimsuse kahekordistamist koefitsiendiga kaks ei saanud elektromagnetiline solenoid töötada, siis vabaneb bimetallieraldus võimsusest 20-30 sekundit.

Liinide hulka kuuluvad ajaga hoiustamise tunnus A masinad, mille käigus isegi lühiajalised ülekoormused on vastuvõetamatud. Nende hulka kuuluvad ahelad, milles on pooljuhtide elemendid.

B-klassi ohutusseadmed

B-kategooria seadmetest on vähem tundlik kui A-tüüpi. Elektromagnetiline vabastus neis käivitub, kui nimivool on 200% kõrgem ja vastamisaeg on 0,015 sekundit. Bimetallplaadi töötamine rikkis koos iseloomuga B-ga sarnase AB-i nominaalväärtusega ületab 4-5 sekundit.

Selle seadme seadmed on ette nähtud paigaldamiseks liinidele, mis sisaldavad pistikupesasid, valgustusseadmeid ja muid ahelasid, kus elektrivoolu alustades ei ole või on minimaalne väärtus.

C-kategooria masinad

Kodu võrkudes on kõige sagedasemad C-tüüpi seadmed. Nende ülekoormus on isegi kõrgem kui eelnevalt kirjeldatud. Selleks, et paigaldada elektromagnetiline väljalülitus solenoid, peab selline seade olema paigaldatud nii, et selle läbivate elektronide voog ületab nimiväärtust 5 korda. Termokaitsesüsteem katkestab 1,5 sekundi jooksul kaitseseadme väärtuse viiekordse ületava väärtuse.

Nagu juba öeldud, on ajami kaitselülitite paigaldamine aega iseloomulik C tavaliselt leibkonna võrkudes. Nad teevad suurepärast tööd sisendseadmete rolli üleüldise võrgu kaitsmiseks, samas kui B-kategooria seadmed sobivad hästi üksikutele harudele, mille külge on ühendatud väljalaske- ja valgustusseadmed.

See võimaldab jälgida kaitsemehhanismide selektiivsust (selektiivsus), ja ühe ahela lühise puudumine ei põhjusta kogu maja energiat.

Circuit Breakers D-kategooria

Neil seadmetel on suurim ülekoormus. Selles seadmes paigaldatud elektromagnetilise mähise käitamiseks on vaja kaitsta kaitselüliti elektrivoolu ületada vähemalt 10 korda.

Sellisel juhul vabaneb termiline vabastamine 0,4 sek.

D-tunnusega seadmeid kasutatakse sageli üldistes hoonete ja rajatiste võrgustikes, kus neil on turvavõrgu roll. Need käivituvad, kui lülituslülitid ei ole eraldi ruumis õigeaegselt katkestatud. Samuti on need paigaldatud vooluringidesse, kus on palju lähtevooge, mille külge näiteks elektrimootorid on ühendatud.

Kategooria K ja Z ohutusseadmed

Selliste tüüpide automaadid on palju vähem levinud kui eespool kirjeldatud. K-tüüpi seadmetel on elektromagnetilise väljalülitamise jaoks vajalike praeguste väärtuste suur erinevus. Vahelduvvooluahela korral peab see indikaator ületama nominaalsüsteemi 12 korda ja konstantseks - 18 võrra. Elektromagnetilise solenoidi töö ei toimu rohkem kui 0,02 sekundit. Sellises seadmes võib termilise vabanemise toimida siis, kui nimivool ületab ainult 5%.

Need funktsioonid on tingitud K-tüüpi seadmete kasutamisest äärmiselt induktiivsete koormustega ahelates.

Z-tüüpi seadmetel on ka elektromagnetilise väljalülitamise solenoidi erinevad väljalülitusvoolud, kuid levimine ei ole sama suur kui AV-kategooria K. Vooluahela vooluringil tuleb nende lahtiühendamiseks pidurdada kolmekordselt ja DC-võrkudes peab elektrivool olema 4,5 korda nominaalset.

Z-iseloomulikke seadmeid kasutatakse ainult liinidel, kuhu on ühendatud elektroonilised seadmed.

Ilmselgelt video kategooriate masinate kohta:

Järeldus

Käesolevas artiklis analüüsisime kaitseautomaatide ajapõhiseid omadusi, nende seadmete liigitamist vastavalt EMP-le, samuti arutasime, millised ahelad on paigaldatud eri kategooriate seadmetesse. Saadud teave aitab teil määrata, milliseid kaitseseadmeid tuleks võrgul kasutada, lähtudes sellest, millistesse seadmetesse see on ühendatud.

Elektrimasinate sordid ja kuidas õigesti valida.

Elektriliste turvaseadmete väljatöötamine on muutunud oluliseks nende väljanägemise pärast. Erinevad ülekoormused põhjustasid mitte ainult kaabli kahjustusi, vaid ka tulekahju.

Tänaseks on selle tüüpi kõige populaarsemad seadmed automaatsed lülitid.

Nad takistavad selliseid sündmusi nagu tulekahjud, elektrijuhtmete kahjustamine. Kuna need on automaatsed, käivitub see ilma inimese sekkumiseta. Parema lüliti valimine aitab kaitsta ruumi õnnetuste eest.

Projekteerimine ja tööpõhimõte


Lüliti automaatse käivitamise mehhanismi mõistmine aitab valida sobiva mudeli. Struktuurselt sisaldab masin järgmisi võtmeelemente:

  • terminalid;
  • lüliti lüliti;
  • elektromagnetiline vabastus;
  • bimetallplaat.

Sõltuvalt ülekoormuse liigist käivitatakse üks kahest mehhanismist.

Kui vooluahela ülekoormus on mitu korda suurem nimivoolust, käivitub bimetalliline plaat. See kuumeneb mõne sekundi jooksul, mille tagajärjel tekib selle termiline paisumine. Kui teatud suurus on saavutatud, tehakse oluline paind ja kett avaneb. Plaadi parameetrite seadmine tootja poolt. Igapäevases kasutuses olevate lülitite puhul võtab reaktsiooniaeg 5-20 s. Tavaliselt tähistatakse tähtedega B, C, D.

Lühiserežiimi (lühis) iseloomustab laviini-sarnane voolu suurenemine, mis ületab mitte ainult nimiväärtuse, vaid ka maksimaalse lubatud koormuse. Plaadi kuumutamisel hüppe ajal ei ole aega, muidu võib juhtmestik sulatada. Sellises olukorras käivitub elektromagnetiline vabastus. Magnetväli juhib südamikku, mis täidab ahela avanemise. Kiire operatsioon võimaldab kaitsta ruumi lühise mõju eest.

Klassifikatsioon

  • pooluste arv;
  • ajavoolu omadus;
  • töövoolu hulk;
  • purunemisvõime.

Postide arv

See omadus vastab juhtmestikude arvule, mis on masinaga otseselt ühendatud. Kõik väljundtraadid lahutatakse samal ajal masina käivitumisel.

Üheastmeline automaat. See on kõige lihtsam tüüpi ahela kaitseseade. Sellega on ühendatud ainult kaks juhtmest: üks läheb koormusse, teine ​​on võimsus. Ta pani standardse ristlõike 18 mm. Toitejuhe on ülespoole ja koormus alumisse otsa. See võib töötada ühes, kahes või kolmes etapis elektrijuhtmetega liinidel. Lisaks toite- ja laadimisjuhtmele on see ka neutraalse ja maandusega ühendatud sobivate pesadega. Sissepääsu juures sellised automaadid ei ole paigaldatud, sest ahel avatakse ainult piki faasiliini. Null juhtmestik jääb suletuks ja ebaõnnestumise korral võib see potentsiaal jääda.

Bipolaarne masin, erinevus ühepoolega. Seda tüüpi kaitselüliti võimaldab teil ruumijuhtmeid täielikult tühjendada. See võimaldab teil kahe väljundliini väljalülitamise ajal sünkroniseerida. Viimane põhjustab elektritööde teostamisel turvalisuse taset. Seda saab kasutada eraldi lülitusseadmetena selliste seadmete jaoks nagu veesoojendaja või pesumasin. Ühendus toimub 4 kaabli abil: paar sisendist ja väljundist.

Lihtne küsimus on loogiline: kas on võimalik ühendada kaks ühepostilist automaati, mitte ühte kahepositsioonilist? Muidugi mitte. Lõppude lõpuks, kui reisi käivitub automaatselt kahesuunaline, on kõik väljundliinid keelatud. Sõltumatute masinate paari korral ei pruugi ühelgi liinil tekkida ülekoormus ja osaline on energia tühjendamine. Tavalistes korterites on võimalik selle automaatse masina jaoks ühendada faasi joon ja neutraal. Kui see avaneb, on kogu selle seadme rühma täielik energiatarve.

Kolm ja nelinurkne masinad. Kõik kolm või neli faasi juhtmed on ühendatud vastava kaitselülitiga. Neid kasutatakse tärniga ühendamisel, kui faasijuhtmed on ülekoormuse eest kaitstud, ja keskjuht jääb kogu aeg või kolmnurga vahele, kui keskkaabel puudub ja faasijuhtmed on kaitstud.

Kui ühel joonel tekib ülekoormus, katkestatakse viivitamatult kõik teised. 6 (kolmefaasiline automaatne) või 8 juhtmest on nende masinatega ühendatud. Väljapääsu juures 3-4 ja väljumisel sama palju liine. Need on monteeritud din rööbasteedele 54 (kolmefaasiline masin) ja 72 mm võrra. Neid kasutatakse kõige sagedamini tööstusrajatistes, ühendades võimsad elektrimootorid.

Ajavoolu parameeter

Erinevate seadmete energiatarve on varieeruv isegi varuvõimsuste kokkulangevuse korral. Tarbimise ebaühtlane dünaamika õige töötamise ajal, koormuse suurenemine lülitamise ajal - kõik need nähtused põhjustavad märkimisväärseid muutusi sellises parameetris nagu praegune tarbimine. Võimsuse varieerumine võib põhjustada lüliti vale käivitumise.

Selliste olukordade kõrvaldamiseks võetakse kasutusele dünaamilised tööparameetrid, mida nimetatakse kaitselülitite ajavooluomadusteks. Selle parameetri automaadid on jagatud mitut tüüpi. Masina reageerimisaeg iga rühma kohta on erinev. Lüliti esipaneel on tähistatud sobiva kirjaga loendist: A, B, C, D, K, Z.

  • Tüüp A vastab pooljuhtkomponentide kaitse automatiseerivatele seadmetele. Voolutugevus ületab hinde 3 korda.
  • B-tüübil on kõige laiem vastusaja intervall: 5 kuni 20 s. Samal ajal ei tohiks praegune reiting enam kui 5 korda ületada. Leidke nende kasutamine elektrivõrkudes koos kodumasinatega.
  • Tüüpi C iseloomustab asjaolu, et kui vool on 5-10 korda kõrgem, siis 10 s pärast hädaseiskamist. Nende kasutamine on kõige laiem: tavalised korterid, ehitus või tööstus.
  • Tüüp D. Seda tüüpi kaitselüliti töötab nimiväärtusega üle 10-15 korda 10 sekundi jooksul. Kõige sagedamini kasutatakse tööstuses ja seda kasutatakse kolmes ja neljapiselises mudeleid.
  • Liigid K ja Z on vähem levinud. Nende rakendusala on induktiivne ja elektrooniline koormus. Kindlaks, et nende kasutamine on parem spetsiaalsete tabelite jaoks.

Nimivool

Erinevused automaattis sõltuvad nimivoolu väärtustest jagatakse mitmesse gruppi (12 praegust taset). See on otseselt seotud reaktsiooniajaga, kui energiatarbimine ületatakse. Töväärtust saab määrata ainult teoreetiliselt, lisades iga seadme eraldi tarbitavate voolude summad. Sellisel juhul peaksite võtma väikese varu. Samuti ärge unustage juhtmevõimalusi.

Automaatmasinad on mõeldud kõigepealt selle kahjustuste vältimiseks. Sõltuvalt juhtmete metallist ja nende ristlõikega arvutatakse maksimaalne koormus. Praeguste kaitselülitite hinnangud võimaldavad seda eraldamist.

  • Madalad voolud hõlmavad mudeleid, mille reiting on 1, 2, 3 A. Nende abiga saate ahelat isoleerida väikese arvu väikese võimsusega seadmetega, näiteks koduvõimalusega. 3 A-masina nimiväärtus sobib madala võimsusega külmikuga ühendamiseks.
  • Automaatide 6, 10, 16 A reitinguid kasutavad seadmed, mille kaudu ühendatakse üksikud ruumid või väikesed korterid. Ettevõtetes nendega töötavad keevitusseadmed või elektrimootorid. Kolmefaasilistes readides kasutatakse neljapooluselist D-klassi masinaid ja 16 A töövoolu.
  • Keskmise tarbimise voolud vastavad automaatidele 20, 25, 32 A. Praktiliselt kõikides kaasaegsetes korterites kasutatakse selliseid seadmeid (tüüp B, C, D). Nad suudavad tagada pesumasinate ja elektrikeriste töö.
  • Kõrgad voolud vastavad masinatele 40, 50, 63 A. Neid kasutatakse võimsate jõuseadmetega ettevõtetes (tüüp D).

Pidurdusvõime

See parameeter sõltub lühisvoolu maksimaalsest kehtivast väärtusest tingimusel, et seade töötab võrgu sulgemisega. Vastavalt lühisvoolu suurusele on kõik automaadid jagatud kolmeks rühmaks.

  • Esimene sisaldab instrumente nominaalväärtusega 4,5 kA. Neid kasutatakse eramajades, mis on ette nähtud inimeste elamiseks. Praegune piirang on umbes 5 kA. See on tingitud asjaolust, et elektrit juhtiva kaabelsüsteemi vastupanu läheb maja alajaama juurde 0,05 oomi.
  • Teise rühma nimiväärtus on 6 kA. Seda taset rakendatakse juba elamute korterelamutes ja avalikes kohtades. Piiratav vool võib ulatuda 5,5 kA (traattakistus 0,04 oomi). See kasutab mudelitüüpe: B, C, D.
  • Tööstusseadmete puhul on hind 10 kA. Sama väärtuse puhul on alajaama läheduses asetseva voolu piirväärtus.

Kuidas valida õiget masinat

Kuni viimase ajani olid laialt levinud portselanist sulavkaitsmed sulavadega elementidega. Nad sobisid hästi Nõukogude korterite samalaadse koormaga. Nüüd on kodumasinate arv muutunud palju rohkem, mille tulemusena on suurenenud tõenäosus tulekahjuks vanade kaitsmetega. Selle vältimiseks tuleb hoolikalt läheneda masina valimisele õigete omadustega. Vältida tuleks ülemääraseid võimsuse reserve. Lõplik valik tehakse pärast mõne lihtsa sammu sooritamist.

Postide arvu kindlaksmääramine

Selle lüliti parameetri määramisel peate järgima lihtsat reeglit. Kui kavatsete kaitsta vooluahela osi seadmetega, mille energiatarve on väike (näiteks valgustusseadmed), siis on parem jätta oma valik ühepostilise automaat (sagedamini klass B või C). Kui kavatsete ühendada keeruka kodumasina märkimisväärse energiatarbega (pesumasin, külmik), siis peate installima bipolaarse masina (klass C, D). Kui seade on väike tootmistehase või mitmefaasiliste tõukejõusüsteemidega garaaž, siis valige kolmeosaline versioon (klass D).

Võimsuse arvutamine

Reeglina on plaan masina ühendamiseks planeeritud ruumi juhtmestik juba maha pillata. Veenide ristlõike ja metalli (vask või alumiinium) tüübi põhjal saate määrata maksimaalse võimsuse. Näiteks vask südamik 2,5 mm 2, see väärtus on 4-4,5 kW. Kuid juhtmestik ei suuda sageli suurt varu. Jah, ja arvutus tuleks teha enne kogu paigaldustööde algust.

Sellisel juhul on vajalik väärtus, mida koguvõimsust kasutavad kõik seadmed. Alati on neid alati võimalik kaasata. Tavalises köögis kasutatakse sageli selliseid seadmeid:

  • külmik - 500 vatti;
  • Elektriline veekeetja - 1700 W;
  • mikrolaineahi - 1800 W

Kogukoormus on 4 kW ja selle jaoks on piisavalt masinaid 25 A juures. Kuid alati on tarbijad, kes lülituvad juhuslikult sisse ja võivad luua tegureid, mis aitavad kaasa lüliti tööle. Sellised seadmed võivad olla kombineeritud või segistiga. Seetõttu peaksite võtma masina üle 500-1200 vatti.

Rated current calculation

Kuna vooluahela ühefaasilised võrgud on võrdsed pinge ja vooluga, on voolu võimsus ja pinge jagunemine lihtne. Ülaltoodud näites on seda väärtust kerge arvutada, teades, et toitepinge on 220 V. Praeguseks tarbimiseks on 18,8 A. Ajavahemikul 500-1200 V on see 20,4-23,6 A.

Selleks, et töö ei katkeks isegi sellise lühiajalise ülekoormusega, võib masina nominaalsuunaline vool olla võrdne 25 A. Ligikaudu sama väärtus vastab nominaalsele väärtusele vaskkaabli alusel, mille ristlõige on 2,5 mm 2 koormus Töötab 25 A nimivoolu automaat, enne kui see hakkab kuumutama.

Hetki iseloomustava aja kindlaksmääramine

See parameeter määratakse spetsiaalse tabeliga, milles on loetletud lähtevoolud ja nende voolu aeg. Näiteks kodumajapidamises kasutatava külmkapi puhul on voolukiirus 5. Võimsus on 500 W, töövool on 2,2 A. Lähtevool on 2,2 * 7 = 15,4 A. Ajakulu andmed on võetud ka eraldi tabelist.

Tabel 1. Kodumajapidamises kasutatavate voolude ja impulsi kestus

Kaitselülitite praegused omadused

Tere, kallid lehe lugejad http://elektrik-sam.info.

Käesolevas artiklis käsitleme põhikaitselisi kaitselüliteid, mida peate teadma, et neid nende valimisel korralikult liikuda - see on kaitselülitite nimivool ja ajavooluomadused.

Lubage mul teile meelde tuletada, et see väljaanne on lisatud mitmest artiklist ja videost elektrikaitseseadmetest kursusest Circuit Breakers, RCD-d, difavtomaty - üksikasjalik juhend.

Kaitselüliti peamised omadused on näidatud tema juhtumil, kus kasutatakse ka tootemargi või kaubamärki ning kataloogi või seerianumbrit.

Kaitselüliti tähtsaim omadus on nimivool. See on maksimaalne vool (amprites), mis voolab masinas läbi piiramatu aja ilma kaitsekontuuri lahti ühendamata. Kui vooluhulk ületab selle väärtuse, aktiveerib automaat automaat ja avab kaitstud ahel.

Kaitselülitite nimivoolu väärtuste vahemik on standarditud ja on:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100A.

Seadme nimivoolu väärtus on näidatud amprites ja vastab ümbritsevale temperatuurile + 30˚С. Suureneva temperatuuri korral väheneb nimivoolu väärtus.

Samuti on elektriplaatide automaadid paigaldatud mitmele üksteise järel üksteisele lähedale, see toob kaasa temperatuuri tõusu (automaadid "soojendavad" üksteist) ja nende poolt sisse lülitatud voolu väärtuse vähenemist.

Mõned kaitselülitite tootjad määravad kataloogide korrektsioonitegurid, et võtta arvesse neid parameetreid.

Üksikasjalikku teavet ümbritseva õhu temperatuuri ja paigaldatud kaitseseadmete arvu kohta leiate artiklist Miks lülitab kaitselüliti soojusenergia sisse.

Mõnede tarbijate elektrivõrguga ühendamise hetkel tekivad ahelates lühiajalised külmikud, tolmuimejad, kompressorid jms käivitusvoolud, mis võivad masina nimivoolu mitu korda ületada. Kaabli jaoks pole selline lühiajaline tõusuvool ei ole kohutav.

Seega, nii et masin ei lülitu välja iga kord väikese lühiajalise vooluahela suurenemisega, kasutatakse erinevaid ajavooluomadusi iseloomustavaid masinaid.

Seega on järgmine peamine tunnus:

Kaitselüliti ajavoolu iseloomustus on kaitstud vooluahela vallandumise aja sõltuvus selle läbi voolava voolu tugevusest. Vool on näidatud suhtena nimivoolule I / In, st mitu korda ületab kaitselüliti voolav vool selle kaitselüliti nimivoolu.

Selle tunnusjoonte tähtsus seisneb selles, et sama nimiväärtusega automaadid lülitatakse välja erinevalt (sõltuvalt ajavoolu omadusest). See võimaldab vähendada valede häirete arvu, kasutades erinevate laadimisviiside jaoks erinevaid voolutugevusega voolukatkestid,

Vaatleme aja-ajalooliste näitajate tüüpe:

- Tüüpi A (2-3 nominaalset voolu väärtust) kasutatakse laialdaste juhtmete pikkusega ahelate kaitsmiseks ja pooljuhtseadiste kaitsmiseks.

- Tüüpi B (nimivoolu 3-5 väärtused) kasutatakse ahelate kaitsmiseks väikese käivitusvoolukorduse väärtusega peamiselt aktiivse koormusega (hõõglambid, kütteseadmed, ahjud, üldvalgustusega valgustusseadmed). Näidatakse kasutamiseks korterites ja elamutes, kus kooremid on enamasti aktiivsed.

- C-tüüpi (5-10 nominaalset voolutarbet) kasutatakse mõõdukate käivitusvooluga seadmete ahelate kaitsmiseks - konditsioneerid, külmikud, kodu- ja kontori pistikupesad, suurema käivitusvooluga gaaslahenduslambid.

- D-tüüpi (nimivoolu väärtused 10-20) kasutatakse kõrge voolutugevusega elektriseadmete (kompressorid, tõstemehhanismid, pumbad, masinad) varustavate ahelate kaitsmiseks. Need on paigaldatud peamiselt tööstusruumidesse.

- Tüüpi K (8-12 nimipinge väärtused) kasutatakse induktiivkoormusega ahelate kaitsmiseks.

- Tüüpi Z (2,5-3,5 nimivoolu väärtused) kasutatakse ülekoormusega tundlikele elektroonikaseadmetele kaitsmiseks.

Igapäevaelus kasutatakse kaitseümbriseid, millel on omadused B, C ja väga harva. Väga harva D. Tunnusjoon näidatakse automaatkorpuse korpuses ladina tähega enne nimipinge väärtust.

Kaitselüliti tähis "C16" näitab, et sellel on hetkeline väljalülitumine C (st kui vool on 5-10 korda suurem kui nimivool) ja nimivool on 16 A.

Kaitselüliti ajavool on tavaliselt graafikuna. Horisontaaltelg näitab nimivoolu mitmekordsust ja vertikaaltelg näitab automaatvastaja reaktsiooniaega.

Graafiku suur hulk on tingitud voolukatkestite parameetrite erinevusest, mis sõltuvad nii välistest kui ka sisemistest temperatuuridest, sest kaitselülitit kuumutatakse selle kaudu läbivat voolutugevust, eriti avariiolukorras, ülekoormuse voolu või lühisevoolu (SC) abil.

Graafik näitab, et kui väärtus I / I≤≤ 1, siis lülitatakse kaitselüliti väljalülitusaeg lõpmatuseni. Teisisõnu, kui voolutugevus läbi voolukatkesti on vooluvõrgust väiksem või sellega võrdne, ei lülitu kaitselüliti välja (välja lülitada).

Graafik näitab ka seda, et mida suurem on I / In väärtus (st kui voolukiirgus läbi voolutugevuse ületab nimivõimsuse), seda kiiremini lülitatakse kaitselüliti.

Kui voolab läbi automaatne kaitselüliti, mille väärtus on võrdne elektromagnetilise vabanemise tööpiirkonna alumise piiriga ("B", 5 "C" ja 10 "jaoks" D "jaoks), peaks see välja lülituma rohkem kui 0,1 sekundi jooksul.

Kui vooluhulgad on võrdsed elektromagnetilise väljalülitusseadise tööpiirkonna ülemise piirväärtusega (5 jaoks "B", 10 "C" jaoks ja "D" jaoks 20 "), lülitab kaitselüliti välja vähem kui 0,1 s. Kui põhiseadme vool jääb hetkeliste väljalülitusvoolude vahemikku, lülitatakse kaitselüliti kas kerge viivituseta või ilma viivituseta (vähem kui 0,1 s).

Järgmistes artiklites kaalume jätkuvalt kaitselülitite omadusi, nende arvutamise ja valimise meetodit ja strateegiat, nii et kui te ei soovi jätta vahele uusi huvitavaid materjale sellel teemal - tellige uudistesaiti, artikli allservas olevat liitumisvormi.

Artikli kokkuvõttes on üksikasjalik ülevaade kaitselülitite reitingust ja praegustest omadustest:

Kaitselülitite peamised tehnilised omadused

Praktilises rakenduses on oluline mitte ainult teada voolukatkestite omadused, vaid ka mõista, mida need tähendavad. Selle lähenemisviisi abil saate otsustada enamiku tehniliste probleemide üle. Vaatame, mida mõeldakse etiketil märgitud või muude parameetritega.

Kasutatud lühend.

Märgistusseadmed sisaldavad kogu vajalikku teavet, mis kirjeldab kaitselülitite põhiomadusi (edaspidi AB). Mida nad mõtlevad, selgitatakse allpool.

Ajavoolu tunnus (BTX)

Selle graafilise kuva abil on võimalik saada tingimuste visuaalne kuju, mille alusel aktiveeritakse vooluahela lülitamise mehhanism (vt joonis 2). Graafikul näitab vertikaalkaugus AB-i aktiveerimiseks vajalikku aega. Horisontaalne skaala näitab suhet I / In.

Joon. 2. Kõige tavalisemate automaattiitrite praeguste omaduste graafiline kuva.

Lubatav ülekoormus määrab ajavoolu omaduste tüübi, mis vabastatakse seadmetes, mis toodavad automaatset väljalülitamist. Vastavalt kehtivatele eeskirjadele (GOST P 50345-99) on igale tüübile määratud tähis (ladina tähtedega). Lubatav ülejääk määratakse koefitsiendiga k = I / In iga tüübi kohta standardväärtused (vt joonis 3):

  • "A" - maksimaalne - kolm korda suurem;
  • "B" - 3 kuni 5;
  • "C" - 5-10 korda korrapärasem;
  • "D" - 10-20 korda üleliigne;
  • "K" - 8-14;
  • "Z" - veel 2-4 töötajat.
Joonis 3. Põhiliste aktiveerimisparameetrite erinevad tüübid

Pange tähele, et see diagramm kirjeldab täielikult solenoidi ja termoelemendi aktiveerimise tingimusi (vt joonis 4).

Solenoidi ja termoelemendi töötamise tsoonide graafik

Ülaltoodu põhjal võime kokku võtta, et AB-i peamine kaitsetunnus on tingitud ajavoolu sõltuvusest.

Tüüpiliste ajavooluomaduste loend.

Olles otsustanud märgistamise üle, jätkame kaalumist erinevatele seadmetele, mis vastavad kindlale klassile sõltuvalt omadustest.

Kaitselülitite laua ajavoolu omadused

Tüüp "A" iseloomulik

Selle kategooria termokaitse AB aktiveeritakse, kui vooluahela suhe nominaalseks (I / In) ületab 1,3. Nendes tingimustes toimub sulgemine 60 minuti pärast. Kuna nimivool on veelgi ületatud, vähendatakse reisi aega. Elektromagnetiline kaitse aktiveerub, kui nominaalne väärtus kahekordistub, vastamissagedus on 0,05 sekundit.

See tüüp on loodud ahelates, mis ei kuulu lühiajalise ülekoormuse alla. Näiteks võime võtta pooljuhtseadiste ahelad nende ebaõnnestumise korral, praegune ületamine on ebaoluline. Seda tüüpi ei kasutata igapäevaelus.

Funktsioon "B"

Selle tüübi erinevus eelmisest on operatsiooni voolus, see võib standardist ületada kolm kuni viis korda. Sellisel juhul aktiveeritakse solenoidmehhanism viiekordse koormusega (pinge väljalülitusaeg - 0,015 s), termoelement - kolmekordne (mitte rohkem kui 4-5 sekundit, vajadus välja lülitada).

Selliste seadmete tüübid on leidnud rakenduse võrkudes, mille jaoks suured pingevoolud pole iseloomulikud, näiteks valgustusahelate jaoks.

S201, mille on valmistanud ABB ajavoolu omadustega B

Iseloomulik "C"

See on kõige tavalisem tüüp, selle lubatav ülekoormus on suurem kui kahe eelmise tüübi puhul. Kui nominaalset režiimi ületatakse viis korda, aktiveerub termoelement, see on ahel, mis lülitab toiteallika välja pooleteise sekundi jooksul. Solenoidmehhanism aktiveeritakse, kui ülekoormus ületab normi kümnekordselt.

AB andmed on kavandatud kaitsma elektrilist vooluringi, milles võib esineda mõõdukas käivoolu, mis on tüüpiline leibkonna võrgule, mida iseloomustab segakoormus. Seadme ostmine kodus on soovitatav valida see vorm.

Triplex Legrandi masin

Iseloomulik "D"

Seda tüüpi AB-d iseloomustavad suured ülekoormuse omadused. Nimelt kümnekordne ülemäärane norm thermoelement ja kakskümmend kordne jaoks solenoid.

Kandke selliseid seadmeid suurel algusvooluga ahelatel. Näiteks asünkroonsete elektrimootorite käivitusseadmete kaitsmiseks. Joonisel 9 on näha selle rühma kaks instrumenti (a ja b).

Joonis 9. a) BA51-35; b) BA57-35; c) BA88-35

Iseloomulik "K"

Sellistel AV-del on solenoidi mehhanismi aktiveerimine võimalik, kui praegune koormus ületatakse 8 korda ja see tagatakse juhul, kui on 12-kordne normaalne režiim ülekoormus (kaheksateistkordne konstantse pinge korral). Koorma väljalülitamise aeg ei ületa 0,02 sekundit. Termoelemendi puhul on selle aktiveerimine võimalik tavalisest režiimis üle 1,05.

Rakendusala - induktiivkoormusega ahelad.

Iseloomulik "Z"

Seda tüüpi eristab väike lubatud nimivoolu ületav väärtus, minimaalne piir on standardi kaks korda suurem, maksimaalne on neli korda. Termoelemendi tööparameetrid on samad, mis AB-le iseloomuliku K-ga.

Seda alamliiki kasutatakse elektrooniliste seadmete ühendamiseks.

Iseloomulik "MA"

Selle grupi eripära on see, et koorma lahutamiseks termoelementi ei kasutata. See tähendab, et seade kaitseb ainult lühistest, on elektrimootori ühendamine üsna piisav. Joonis 9 näitab sellist kohanemist (c).

Nominaalne töövool

See parameeter kirjeldab tavapärase töö maksimaalset lubatud väärtust, kui see on ületatud, aktiveeritakse koorma lastav süsteem. Joonisel 1 on näidatud, kus see väärtus kuvatakse (IEK tooted on näide).

Regulaarne töö voolab ringi

Termilised parameetrid

Termin tähistab termoelemendi töötingimusi. Neid andmeid saab saada vastavast ajagraafikust.

Ultimate breaking capacity (PKS).

See tähis tähendab maksimaalset lubatavat koormust, mille korral seade suudab kontuuri avada ilma jõudlust kaotamata. Joonisel 5 on see märgistus tähistatud punase ovaalsega.

Joon. 5. Seadme tootja Schneider Electric

Praegune piirkategooria

Seda terminit kirjeldatakse AB-i võime lahti ühendada enne, kui selle lühisevool jõuab maksimumini. Kohandused on saadaval kolme liigi praeguse piiranguga, olenevalt laadimisaja väljalasetest:

  1. 10 ms ja rohkem;
  2. 6 kuni 10 ms;
  3. 2,5-6 ms.

Seega, mida suurem kategooria, seda väiksem on elektrijuhtmete kuumusega kokkupuude, mistõttu väheneb selle süüte oht. Joonisel 6 on see kategooria ringiga punane.

Tähis BA47-29 tähistab praeguse piirangu klassi

Pidage meeles, et esimese kategooria AB-l ei pruugi olla asjakohast märgistust.

Väike elu, kuidas valida kodus õige lüliti

Pakume mõningaid üldisi soovitusi:

  • Tuginedes kõigile ülalnimetatutele, peaksime valima AB-ga ajahetke "C".
  • Standardsete parameetrite valimisel tuleb kaaluda kavandatud koormust. Arvutamiseks tuleks kasutada Ohmi seadust: I = P / U, kus P on ahela võimsus, U on pinge. Voolutugevuse (I) arvutades valime nominaalse AB vastavalt tabelile, mis on kujutatud joonisel 10. Joonis 10. Diagramm AB valimiseks sõltuvalt koormusvoolust

Kirjutame, kuidas ajakava kasutada. Näiteks, koormusvoolu arvutamisel saime tulemuse 42 A. Teil tuleb valida automaat, kus see väärtus asub rohelises tsoonis (tööpiirkonnas), siis see on 50 A. Valikus peaks arvestama ka seda, milline on praegune tugevus juhtmestiku jaoks.. Selle väärtuse põhjal on lubatud masin valida, tingimusel et koormusvool on väiksem kui juhtmestiku arvutuslik vool.

  • Kui on ette nähtud jäävvooliseade või diferentsiaal voolukatkesti, tuleb tagada maandamine, muidu need seadmed ei pruugi korralikult töötada;
  • Parem on eelistada tuntud kaubamärkide tooteid, need on usaldusväärsemad ja kauem kui Hiina tooted.