Vooluahela spetsifikatsioonid

  • Valgustus

Kaitselüliti või lihtsalt lihtsalt kaitselüliti on peaaegu kõigile tuttav elektriseade. Kõik teavad, et masin lülitab võrgu välja, kui sellega on probleeme. Kui te ei ole tark, siis on need probleemid liiga elektrivooluga. Liigne elektriline vool on ohtlik, kui kõik juhtmed ja kodumasinad ei tööta, võib-olla ülekuumenemise, tulekahju ja seega ka tulekahju. Seepärast on kaitse kõrge voolu vastu elektriahelate klassikaline ja see eksisteeris elektrifitseerimise ajal.

Maksimaalse voolukaitse seadmetel on kaks olulist ülesannet:

1) õigel ajal ja täpselt ära tunda liiga kõrge voolu;

2) katkestage ahel enne, kui see vool võib põhjustada mingeid kahjustusi.

Sellisel juhul saab suure voolu jagada kahte kategooriasse:

1) võrgu ülekoormuse tagajärjel tekkinud suured voolud (näiteks suure hulga kodumasinate lülitamine või mõne neist rike);

2) lühisev ülekoormus, kui null- ja faasijuhtmed on otseselt ühendatud, mööda koormust.

Võib-olla võib see mõnele inimestele kummaline olla, kuid ekstreemse lühisvooluga on see kõik väga lihtne. Kaasaegsed elektromagnetilised statiivid hõlpsasti ja täiesti õigesti lühisid ning koormus lahutavad sekundi murdosa, vältides juhtmete ja seadmete vähimatki kahjustamist.

Ülekoormuse vooludega on veelgi raskem. See vool ei erine oluliselt nimiväärtusest, võib mõne aja pärast voolata mööda vooluringi ilma igasuguste tagajärgedeta. Seetõttu ei ole niisugust praegust koheselt vaja välja lülitada, eriti kuna see oleks võinud tunduda väga lühidalt. Olukorda raskendab asjaolu, et igal võrgul on oma piiratud ülekoormusvool. Ja mitte ühtki.

Vooluahela seade

On mitmeid vooge, millest igaühe jaoks on teoreetiliselt võimalik kindlaks määrata maksimaalne võrgu seiskamisaeg, ulatudes mõnest sekundist kümnete minutiteni. Kuid ka valepositiivid tuleb ka välistada: kui võrgu vool on kahjutu, siis ei tohiks sulgemine minna ega tunde - mitte kunagi üldse.

Selgub, et ülekoormuse kaitse seadeväärtust tuleks kohandada konkreetse koormusega, muuta selle vahemikku. Ja muidugi tuleb enne ülekoormuskaitse seadme paigaldamist laadida ja kontrollida.

Seega on tänapäevases "automaatikas" olemas kolme tüüpi väljalasked: mehaaniline - käsitsi sisselülitamine ja välja lülitamine, elektromagnetiline (solenoid) - lühisevoolu väljalülitamine ja kõige raskem - soojuskaitse, et kaitsta ülekoormust. See on kaitselülitile iseloomulik soojus- ja elektromagnetiline väljalülitusseade, mis tähistab seadme praeguse reitingu tähistava numbri ees olevat ladina tähte korpusel.

See omadus tähendab:

a) ülekoormuskaitse tööpiirkond on sisseehitatud bimetallplaadi parameetrite tõttu, ahela painutamine ja purunemine, kui selle kaudu voolab suur elektrivool. Täppis reguleerimine saavutatakse selle plaadi vajutamisega kruvi reguleerimisel;

b) sisseehitatud solenoidi parameetrite tõttu maksimaalse voolukaitse tööpiirkond.

Kaitselüliti ajavool

Allpool loetleme modulaarsete kaitselülitite omadused, räägime sellest, kuidas need üksteisest erinevad ja millised on need masinad. Kõik omadused sõltuvad koormusvoolust ja selle voolu väljalülitusajast.

1) Iseloomulik MA - termiline vabastamine puudub. Tegelikult pole see tõesti alati vajalik. Näiteks elektrimootorite kaitse toimub tihti maksimaalse voolu releedega ja sellisel juhul on automaatne ainult lühisevoolu kaitsmiseks vajalik.

2) Iseloomulik A. Selle omaduse automaatne soojuslik vabastamine võib käivituda nimivoolu juures 1,3. Samal ajal jääb aega umbes tund. Vooluhulga korral, mis ületab nominaalset kahet, saab elektromagnetiline vabastus käivituda umbes 0,05 sekundi jooksul. Aga kui solenoid ei tööta topeltvoolu ülemises osas, on termiline vabastamine endiselt "mängul", lahutades koormuse umbes 20-30 sekundit. Kui voolutugevus ületab kolme korda, on elektromagnetiline vabastus garanteeritud töötama sajandikku sekundis.

Kaitselülitite omadused A paigaldatakse nendesse ahelatesse, kus tavapärases töörežiimis ei esine mööduvat ülekoormust. Näiteks on ahel, mis sisaldab pooljuhteelementidega seadmeid, mis võivad väikese liigse vooluga rikkuda.

3) Iseloomulik B. Kõnealuste automaatide iseloomulikkus erineb iseloomulust A selle poolest, et elektromagnetiline vabastamine võib toimida ainult siis, kui voolutugevus ületab mitte kahe, vaid kolme või enama korra. Solenoidi reageerimisaeg on ainult 0,015 sekundit. Automaatploki B kolmekordse ülekoormuse termiline vabastamine töötab 4-5 sekundi pärast. Automaatne garanteeritud töö toimub vahelduvvoolu viiskordsel ülekoormusel ja koormusel, mis ületab nominaalset 7,5 korda DC-ahelates.

Kaitselülitite omadusi B kasutatakse valgustusvõrkudes ning ka muudes võrkudes, kus voolu algus suureneb või väheneb või puudub üldse.

4) Iseloomulik C. See on kõige enam elektrikutele kõige kuulsam omadus. Automaatika C eristatakse veelgi suurema ülekoormusega võrreldes automaatide B ja A korral. Seega on iseloomuliku C automaatväljundi minimaalne vastusvool viis korda nominaalset voolu. Samal ajal vallandab termiline vabastus 1,5 sekundi pärast ja elektromagnetilise vabanemise tagatud vabastamine tekib vahelduvvoolu kümnekordsel ülekoormusel ja 15-kordse ülekoormuse korral alalisvoolu ahelates.

Kaitselülitid C on soovitatavad paigaldamiseks segakoormusega võrkudesse, eeldades, et mõõdukad pingevoolud, mille tõttu leibkondi sisaldavad täpselt seda tüüpi automaatlülitusseadet.

Vooluahela B, C ja D spetsifikatsioonid

5) Iseloomulik D - omab väga suurt ülekoormust. Selle automaadi elektromagnetilise solenoidi minimaalne käivitusvool on kümme nominaalset voolu ja termiline vabastamine saab käivitada 0,4 sekundit. Garanteeritud operatsioon on varustatud kahekümne ülekoormusega.

Kaitselülitite omadused D on ette nähtud peamiselt suure jõuülekandega elektrimootorite ühendamiseks.

6) Tunnust K iseloomustab suur erinevus maksimaalse solenoidse käivitumiskiiruse vahel vahelduvvoolu ja alalisvoolu ahelates. Minimaalne ülekoormusvool, mille korral elektromagnetväljund saab nende masinate käivitamiseks käivitada, on kaheksa nimivoolu ja sama kaitse tagatud vastamisvool on 12 vahelduvvoolu ahela nimivoolu ja 18 alalisvoolu voolu nominaalvoolu. Elektromagnetilise vabastamise reaktsiooniaeg on kuni 0,02 sekundit. Automaatploki K termiline vabastamine võib käivituda vooluga, mis ületab hinnatud väärtust vaid 1,05 korda.

Nende karakteristikute K omaduste tõttu kasutatakse neid automaatrežiime ainult induktiivse koormuse ühendamiseks.

7) Characteristic Z omab ka erinevusi elektromagnetilise vabastamise tagatud töö vooludes vahelduvvoolu ja alalisvoolu ahelates. Nende masinate minimaalne võimalik solenoid-väljalülitusvool on kaks nominaalset ja elektromagnetilise vabastamise garanteeritud väljalülitusvool on AC-ahelate kolm nominaalset voolu ja alalisvooluahela 4,5 nominaalset voolu. Automaat-Z soojuslik vabastamine, nagu automaat K, võib käivituda 1,05-ga nimiväärtusest.

Z masinaid kasutatakse ainult elektrooniliste seadmete ühendamiseks.

Circuit Breakers - spetsifikatsioonid

Paradoksaalne asjaolu on see, et pärast seda, kui "sulavkaitsmed" lõpetasid elektrooniliste (elektriliste) seadmete kasutamise, mis põletas võrguparameetrite ebaharilike muutuste ajal, suurenes põletatud elektriseadmete arv märkimisväärselt, hoolimata sellest, et automaatne kaitselüliti on palju tundlikum, reageerivad kiiremini ja võivad vältida isegi lühisid.

Küsi, mis on saak? Vastus on lihtne. Mugavus on kaitselüliti tööpõhimõte, mis võimaldab seda uuesti sisse lülitada. Vähesed võivad ohtu lihtsalt asendada kaitsmega, mõistmata seadme tõrke põhjuseid. Lõppude lõpuks peate otsima veel ühte, kui midagi läks valesti. Seega, kui kaitsmed põlesid, üritas omanik kõigepealt leida "põlemise" põhjuse, mitte varukadu või korgi. Automaatsed kaitsesüsteemid kõrvaldasid "varuosa" otsingu, võimaldades samal ajal omanikul katkestatud automaatse masina korduvalt lõpetada mitteoperatiivse seadme või isegi kogu elektrivõrgu lõpetamise. Siit on selline statistika. Vaatame välja, milline on kaitselüliti, "mida seda söötakse," ja samal ajal kuidas seda korralikult käsitseda.

Kaitselülitite tööpõhimõtted

Alustame elektrivõrgust, mida kaitseb kaitselüliti, mille omadused sõltuvad otseselt kaitstud võrgu sektsiooni parameetritest. Automaatmonaatori ülesandeks on jälgida antud vooluahela parameetreid ilma ülekoormata, katkestada viivitamatult sektsioon, kui juhtmed või lühis on ülekuumenenud, samuti kui vool ületab lubatavaid läviväärtusi. Seega on punkt, kus teie objekt on ühendatud elektrisüsteemiga, ja energiat tarbiv seade, on kaks peamist elementi. Esimene on kaitselüliti, mille omadused on ühendatud teise kaabli (juhtmega), täpsemalt juhtmete arvu ja selle kaabli ristlõikega. Siin on kaks lihtsat näidet:

Koridoris on mitu lambipirnit koguvõimsusega 400 vatti ja põrandakütte maatüki võimsus 1500 vatti. Võrk on 220 volti, mis tähendab (Watts = Volts x Amperes), 1400 vatti ja 220 volti võrra võrdub 8,4 amprit. See tähendab, et selle piirkonna kaitsmiseks on piisav 8,4-meetrise vooluga masin ja me seadisime 10 A.

Köögis on 10 seadet võimsusega 1200 vatti ja kokku 12 000 vatti. Sellest tulenevalt jagame selle jaotise osas 12 000 220, vaja on 54 amprit, kuid me oleme piiranud 25 amprise standardautomaatti.

Nende näidete kaitselülitite tööpõhimõtte mõistmine on piisav.

Koridoris lülitatakse seade kõige tõenäolisemalt välja ainult siis, kui ahelas esineb lühis. Surve tõenäosus ülekoormuse tõttu, selle võrgu ülekuumenemine on tühine (samade praeguste parameetritega saab väljastpoolt). Selles piirkonnas ei ole ka spetsiaalseid nõudeid juhtmete ristlõikele. Tähelepanu! Selles koridoris, mida näidetena ei näidata, pole teiste seadmete ühendamiseks pistikupesi!

Kuid köögis lisab üks pärast teistest seadmetest järgmist olukorda:
Iga komplektis olev seade (+1200 vatti) suurendab koormat, mis tähendab selle voolu tugevust selles vooluringis. Lisatud 5. seade tõstab voolu järgmisele: 5 * 1200/220 = 27,3 A.

Automaatne "teab", et voolu selles piirkonnas ei tohi ületada 25 amprit. Seepärast viienda seadme lisamine toob köögi võrgust lahti. (Täpsustage, kui automaatne omadus on 1 kuni 1, nagu allpool kirjeldatud).

Niisiis, automaat, mis tuvastas praeguse parameetri ülejäägi, lülitas võrgupartii välja. Mis juhtub, kui köögis tekib lühis? Sulgemine toob kaasa koormuse järsu suurenemise ja hetkelise voolu suurenemise. Sellisel juhul muutuvad juhtmed kütteelementideks, kuumutades kõrgel temperatuuril. Soojenemine toimub samaaegselt kogu ahelaga, mille kaudu voolab vool. Sellisel juhul võib vool kohe suurendada väga suured väärtused. See võib põhjustada kokkupuutel põletusi ja tulekahju, kui kaitselüliti väljalülitamise aeg pole õige.

Ülaltoodut silmas pidades saate hõlpsasti aru saada masinate muudest omadustest, nende "lugemisest", samuti kaitselülitite tööpõhimõtetest, sealhulgas tööstuslike rakenduste jaoks.

Automaatmaade seade, märgistus ja tehnilised omadused

Kaitsevahendi funktsioonidest läheb selle seade voolab. See on lüliti, mis tagab elektrivoolu avamise üleliigse voolu või kütmise tõttu. See tähendab, et masinas on kaks vooluahelat, mis on suunatud ahela garanteeritud avanemisele. Kuumutamisel muudab bimetallplaat mahtu, mis tagab kontaktide füüsilise eraldamise (termiline vabastamine). Elektromagnetiline vabastus koos praeguste parameetrite vastuvõetamatute muutustega loob ruumi seespool, kus liikuv jälgija asub, samuti avab ahela. Lülitusseadmete sisselülitamisel ja väljalülitamisel kontaktide kaarel kustub arstekamber. Erinevat tüüpi automaatide jaoks on muid disainifunktsioone, kuid need on põhilised.

Automatiseerimise klassifikatsioon

Pooluste arv: ühe- ja kahepooluselised lülitid, millel on 1 või 2 kaitstud poolust, 3-pooluselised lülitid koos 3 kaitstud poolusega, neljapostilise lülitiga 3 või 4 kaitstud poolusega.

Kaitse välise mõjuga: suletud või avatud katse.

Vastavalt selle paigaldamise viisile: seinatüüp, süvistatav tüüp, paigaldus jaotuskappides (kaasa arvatud paigaldamine din-rööbastele), kombineeritud.

Vastavalt selle ühendamise meetodile: mehaanilise kinnitusega või ilma.

Hetkevaba voolutugevus, mida tähistatakse tüüpidega B, C, D.

Automaatmärgistuse tähistamine peegeldab konkreetse seadme omadusi, see on rangelt standarditud, kavandatud fotol on see selgelt nähtav:

Tehnilised omadused (kajastub märgistuses) vastavad järgmistele väärtustele:

Nimivool (A), väärtus (märgitud märgistuses) vahemikus: 6,3, 10, 16, 25, 32, 40, 63, 100, 160 A - elamute jaoks 1000, 2600 A - tööstuslikuks otstarbeks.

Tööpinge 220 V (220, 230, 250) või 380 V (380 400).

Hertsi sagedus on 50 või 60.

Väljalülituskõverate omadused sõltuvalt vooluahela koormusest: B - madala lühisevoolu (kütteseadmed) võrgud, C - kõrgevoolude võrgud (kõige levinumad), D - kõrgete käivitusvooludega (masinad, elektrimootorid, CA jne)..) Teised klassid on: A - suure vastupidavusega ja kaotusega võrgud, Z-võrgud tundlike elektrooniliste seadmete ja vähese voolutarbega seadmetega, K-spetsiifiline rakendus suure voolutugevusega võrkude jaoks. Iga klass peegeldab ahela kaitsmise õigsust ilma tarbetute toiminguteta ja valede katkestusteta. Kui lülitate automaatse C-ga korterisse võimsa elektrimootori või keevitusseadme, lülitub automaatne lülitus peaaegu kindlasti lahti. Tõsiasi on see, et suure võimsusega elektriseadmete lähtevoolud võivad olla mitu korda kõrgemad kui nominaalväärtused. Sellepärast automaat D, mis "realiseerib", et masin on sisse lülitatud, ei lülita elektrit välja automaatselt C-st veidi enam kauemaks, kui masin läheb arvestuslikule nominaalsele töörežiimile, pärast seda jõuavad võrgu voolud õigetesse väärtustesse.

Lühendatud lühisvool (PKS) määrab voolu, mille korral masin lülitub välja tõrgeteta. Näiteks on standardse kodumajapidamise automaatne kolmeosaline voolukatkesti PKS 4000, kuid Vene tehases töötavad voolukatkestid, isegi need, mida kasutatakse igapäevaelus, on PKS 6000 või kõrgemad, hoolimata sellest, et see on tööstusliku rakendusala. Mida kõrgem on PKS väärtus, seda rohkem garanteerib, et masin lülitub välja ka võrgu kõige tõsisemate õnnetusjuhtumite korral.

Hetki-aja iseloomustus, mis peegeldab aja vältel sõltuvalt praegusest. Mida vähem aega, seda usaldusväärsem on võrk ja see on kallim masin. See omadus on kombineeritud (ühes tsoonis lülitatakse soojusenergia, teises elektromagnetiliste releaserite puhul). Andmed selle kohta leiate viitedokumentidest. Tarbijale on oluline mõista, et automaadid võivad olla aeglane, keskmise kiirusega ja kiire toimega. Lisaks ajajärgule peegeldab see sama omadus kaitseseadme piiravat liigset voolu (1 kuni 14 ühikut nimiväärtusest). See graafik näitab, kuidas kaitselüliti reaktsiooniaeg muutub suureneva vooluga:

Kogunemis-füüsikalised omadused, samuti väliskeskkonnast pärit kaitseklass, kajastuvad toodete passides, kuid neid saab näha palja silmaga.

Kuidas praktikas kasutada masina nõuetekohase valiku tunnuseid?

Iga kaitselüliti, mille omadused on meile ligilähedaselt selged, peavad kõigepealt vastama selle põhieesmärgile - võrgu sektsiooni kaitsele. Samal ajal peab see tagama, et ühelt poolt ei tohiks ületamatuid katkestusi teha ning ei võimalda võrgu sektsiooni sees olevat kaitsetõrjet, mis võib põhjustada seadme (seadmete) rikke.

Alustame teie elektrivõrgu hinnanguga - juhtmete ligikaudne pikkus, juhtmete arv ja ristlõige, maanduskeerme olemasolu, isolatsiooni kvaliteet ja kasutatavate elektriseadmete arv (sagedus ja võimsus).

Mida kauem on kaablid, seda suurem on nende vastupanu, vaid tavaline korter, kus südamikku kasutatakse 1,5 mm kaugusel. hästi sobib kõige tavalisem automaat klass C 220V. Postide arv annab meile võrgu kilp, paigaldusfunktsioonid ja funktsioonid. Soovitav on konsulteerida nendega, kes installeerimist teevad! Märgistuses oleva voolu tugevus (näiteks C16) määratakse kindlaks kaasas olevate seadmete koormuse järgi, võttes künnise väärtuse kahekordse reitinguna, et välistada valesid katkestusi. Oletame, et kõigi seadmete samaaegse sisselülitamise vool (arvutus vt ülal) on 35 amprit, arvestades, et selline olukord on ebanormaalne, piisab automaatse C25 kasutamisest. Masin ei sulgeda, kuid täiendav "avarii" koormus suureneb kui õigeaegne väljalülitus.

Tootja valimine

Olles otsustanud selle pinge, voolu ja töökiiruse, mida tegelikult piirab sama klassi automaatide hind, valime tootja. Vaatamata ühisele arvamusele, on vene automaatkaitselülitid väga usaldusväärsed seadmed, mis on valmistatud vastavalt külalistel (mis on tugevad kui tootjate TU) ja on odavamad. Igal juhul on kõige õigem, kas ühe tootja kogu paneeli varustus (mitte ainult masinad, vaid ka rööpad, kilp ja lisaseadmed), mis mitte ainult ei võimalda paigaldamist lihtsamaks (täieliku ühilduvuse tõttu), vaid aitab säästa ka aega, ostes kõike üks koht.

Kui on koostatud sissejuhatava osa spetsifikatsioon (kilp, automaatmasinad jne), soovitame anda ekspertidele hindamiseks. Kui määrate selle töö spetsialistidele, kontrollige oma soovituste abil, kuidas teie nägemuse valik on õige. Kui teil on küsimusi, ärge rahul ennast "nad teavad paremini" - kindlasti saate teada, miks seda võimalust pakutakse.

Inimkaitse on esmatähtis!

Kokkuvõtteks ütleme veel teise seadme kohta, mis peaks muutuma teie kilbi peakaitsevahendiks. Artiklis käsitleti võrgu ja seadme kaitse aspekte, nüüd räägime, kuidas kaitsta inimest. Selleks kasutage nn automaatset diferentsiaalvoolu lülitit, mille eesmärk lisaks jälgimise vooludele on lekete ja võrgu ebanormaalsete muutuste jälgimine. Lihtsamalt öeldes tunnistab selline automaatne tüüp, et võrgu omadustes esineb lubamatuid muutusi, mis kuuluvad kategooriasse "isolatsioonikahjustus", "inimeste kokkupuude otsejuhtmetega" jne.

Selline avastamine põhjustab võrgu sektsiooni hetkeseisu. Mõnikord nimetatakse diferentsiaalvoolu kaitselülitid RCDd (jääkvooluadapter), MDZ (diferentsiaalkaitse moodul). Neid saab kasutada koos teiste masinatega. Selle masina peamine erinevus seisneb selles, et see töötab inimese kaitsmiseks elektrilöögi eest. Kõige olulisemad on sellised seadmed vannitubade ja vannide (eelistatavalt maksimaalse tundlikkusega) ja köökide ühendamiseks. Kuid tänapäeval eelistavad paljud selliseid lülitiid korteri kõikides võrgu osades asetada.

Loodame, et see artikkel on teile RCD valimisel kasulik ja seetõttu on teie elektrivõrgust usaldusväärselt kaitstud elektriseadmed.

Kaitselüliti valik: elektrimasinate tüübid ja omadused

Kindlasti paljud meist mõtlesid, miks lülitid nihkuvad elektrilöögi ajal aegunud kaitsmed nii kiiresti? Nende kasutuselevõtu tegevus on õigustatud mitmete väga veenvate argumentidega.

Masin lülitab peaaegu koheselt talle usaldatud liini, mis välistab juhtmestiku ja võrgutoitega varustuse kahjustumise. Pärast väljalülitamist saab filtri kohe taaskäivitada, ilma ohutusseadist välja vahetamata. Lisaks sellele on võimalik osta sellist kaitset, mis ideaaljuhul vastab teatud tüüpi elektriseadmete ajaloolistele andmetele.

Selleks, et lülitada kaitselüliti õigesti välja, on vaja mõista seadmete liigitust. Te peate teadma, millised parameetrid peaksid pöörama suurt tähelepanu. Selle väärtusliku teabe leiate meie poolt välja pakutud artiklist.

Vooluahela klassifikatsioon

Kaitselülitid valitakse tavaliselt nelja peamise parameetri järgi: nimiväljundvõimsus, pooluste arv, ajavoolu tunnus, nimivoolu vool.

Parameeter # 1. Hindatud purunemisvõime

See tunnus näitab lubatavat lühisvoolu (SC), mille juures lüliti töötab, ja lülitades ahela välja, vabastage juhtmed ja sellega ühendatud seadmed. Selle parameetri järgi jagatakse kolme tüüpi automaadid: 4,5 kA, 6 kA, 10 kA.

  1. Automaatne 4,5 kA (4500 A) kasutatakse erasektori elamute energiavõrkude kahjustuste välistamiseks. Aluskaabli alalisvoolu juhtmestiku vastupanu on ligikaudu 0,05 Ohm, mis annab praeguse piirangu ligikaudu 500 A.
  2. 6 kA (6000 A) seadmeid kasutatakse elamuehituse kaitsmiseks lühisest, avalikes kohtades, kus liinide vastupidavus võib ulatuda 0,04 oomi, mis suurendab lühise kuni 5,5 kA.
  3. Lülitid 10 kA (10 000 A) jaoks kasutatakse elektriseadmete kaitsmiseks tööstuslikuks kasutamiseks. Lähtematerjali lähedal asuvas lühis võib esineda kuni 10 000 A voolu.

Enne kui valida kaitselüliti optimaalne modifikatsioon, on oluline mõista, kas lühisekaitse vool on võimalik üle 4,5 kA või 6 kA?

Seadme väljalülitamine toimub seadistatud lühise ajal. Kõige sagedamini kasutatakse 6000A kaitselülitid kodustele vajadustele. Mudeleid 4500A ei kasutata tänapäevaste elektrivõrkude kaitsmiseks ja mõnedes riikides on nende kasutamiseks keelatud.

Kaitselüliti töö on kaitsta juhtmestikku (mitte seadmeid ja kasutajaid) lühistest ja isolatsiooni sulatamisest, kui vool ületab nimiväärtusi.

Parameeter # 2. Postide arv

See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).

See omadus näitab maksimaalselt võimalikku arvu juhtmeid, mida võrku kaitsmiseks saab ühendada AV-ga. Need avanevad hädaolukorra tekkimisel (lubatud ajavoolu väärtuste ületamisel või ajavoolu kõvera taseme ületamisel).

Ühepoolusega masinate omadused

Unipolaarse tüübi lüliti on automaatmasina kõige lihtsam muutmine. See on mõeldud üksikute ahelate, samuti ühefaasilise kahefaasilise kolmefaasilise juhtme, kaitsmiseks. Kaitselüliti konstruktsiooniga on võimalik ühendada kaks juhtmest - toitejuhe ja väljundvoolukanal.

Selle seadme klassi funktsioonid hõlmavad ainult traadi kaitset tulekahju eest. Juhtme neutraal asetseb nullibussi juures, möörates seega kaitselülitit, ja maandusjuhe on maasse eraldi ühendatud.

Üheposalaline automaat ei täida sisendfunktsiooni, sest kui see on sunnitud lahti ühendama, on faasiliin katkenud ja neutraal on ühendatud pingeallikaga, mis ei anna 100% garantii kaitsele.

Bipolaarsete lülitite omadused

Kui pinge võrgukaablit tuleb täielikult lahti ühendada, kasutage kahesuunalist masinat. Seda kasutatakse sisendina, kui lühise või võrgu rikete ajal on kõik elektrijuhtmed üheaegselt pingestatud. See võimaldab teil õigeaegselt tööd teha, ketid moderniseerida, on täiesti ohutu.

Kandke bipolaarseid masinaid juhtudel, kui ühefaasilise elektriseadme jaoks on vaja eraldi lülitit, näiteks veesoojendit, boilerit, tööpinki.

Ühendage masin kaitstud seadmega, kasutades 4 juhtmest, millest kaks on toitejuhtmed (üks neist on otse võrguga ühendatud ja teine ​​annab toitejuhtme jumperiga) ja kaks väljundvoolu, mis vajavad kaitset, ja need võivad olla 1-, 2-, 3-juhtmeline.

Pingelülitite kolmepunktilise modifikatsiooniga

Kolmefaasilise 3-või 4-juhtmeta võrgu kaitsmiseks kolmepoolsete masinate abil. Need sobivad ühendamiseks vastavalt tärnitüübile (keskkaabel jääb kaitseta ja faasijuhtmed on ühendatud postidega) või kolmnurk (keskjuhtmest puudu).

Õnnetusjuhtumi korral mõnel joonel muudavad teised kaks ise.

Kolmeosaline kaitselüliti on sisendiks ja ühine kõigi kolmefaasiliste koormuste puhul. Elektrilöögi saamiseks kasutatakse sageli tööstuslikku modifikatsiooni.

Mudelile on ühendatud kuni 6 juhtmest, millest 3 on kolmefaasilise toitevõrgu faasijuhtmega. Ülejäänud kolm on kaitstud. Need esindavad kolme ühefaasilist või ühte kolmefaasilist juhtmestikku.

Neljafaasiline automaatne kasutamine

Selleks, et kaitsta kolme-, neljafaasilist elektrivõrku, näiteks staari põhimõttel ühendatud võimsat mootorit, kasutatakse neljafaasilist automaati. Seda kasutatakse kolmefaasilise neljajuhtmelise võrgu sisendlülitiga.

Masina kehasse on võimalik ühendada kaheksa traati, millest neli on elektrivõrgu faasijuhtmed (millest üks on neutraalne) ja neli on väljastpoolt tulevad juhtmed (3 faasi ja 1 neutraalne).

Parameeter # 3. Ajavoolu iseloomustus

AB-l võib olla sama koormusvõimsuse näitaja, kuid seadmete elektrienergia tarbimise omadused võivad olla erinevad. Võimsustarve võib olla ebaühtlane, olenevalt tüübist ja koormusest, seadme sisselülitamisest, seadme väljalülitamisest või pidevast töötamisest.

Võimsuse kõikumine võib olla üsna märkimisväärne ja nende muutuste ulatus - lai. See toob kaasa masina seiskumise seoses nimivoolu ülemkogusega, mida loetakse võrgu valeks lahutamiseks.

Selleks, et vältida kaitseseadise otstarbekamat kasutamist, kui mitte-hädaolukorra standardmuudatusi (voolu suurenemine, võimsuse muutus) kasutatakse, kasutatakse teatud ajavoolu omadustega automaati (VTH). See võimaldab samade praeguste parameetritega lülitite kasutamist meelevaldsete lubatud koormustega ilma valede katkestusteta.

BTX näitab, millal lüliti töötab ja millised näitavad masina voolu- ja alalisvoolu suhet.

Iseloomuliku B masinate tunnused

Määratud karakteristikuga automaatne lülitub välja 5-20 sekundi jooksul. Praegune indikaator on 3-5 masina nominaalset voolu. Neid muudatusi kasutatakse, et kaitsta aheldusi, mis söövad kodumajapidamises kasutatavaid standardseadmeid.

Kõige sagedamini kasutatakse seda mudelit, et kaitsta korterite, eramajade juhtmeid.

Iseloomulik C - tööpõhimõtted

Nomenklatuuri tähistusega C automaatne seade on välja lülitatud 1-10 sekundi jooksul 5-10 tunnise vooluga.

Nad kasutavad selle grupi lülitite kõiki valdkondi - igapäevaelus, ehituses, tööstuses, kuid need on kõige nõudlikumad korterite, majade ja eluruumide elektrilise kaitse valdkonnas.

D-märgiga lülitite kasutamine

D-klassi masinaid kasutatakse tööstuses ja neid esindavad kolme- ja neljapostilised modifikatsioonid. Neid kasutatakse võimsate elektrimootorite ja erinevate 3-faasiliste seadmete kaitsmiseks. AV-i reageerimisaeg on 10-10 sekundit vooluga, mis on korduv 10-14, mis võimaldab seda tõhusalt kasutada erinevate juhtmestike kaitsmiseks.

Võimsad tööstusmootorid töötavad ainult AB-ga, millel on iseloomulik D.

Parameeter # 4. Hindatud töövool

Kokku on automaattites 12 muudatust, mis erinevad arvestusliku töövoolu - 1A, 2A, 3A, 6A, 10A, 16A, 20A, 25A, 32A, 40A osas. Parameeter vastutab automaadi töö kiiruse eest, kui vool ületab nominaalsuuruse.

Määratud omaduse lüliti valimine tehakse, võttes arvesse elektrijuhtmete võimsust, lubatud voolu, mida juhtmestik normaalses režiimis suudab taluda. Kui praegune väärtus on teadmata, määratakse see kindlaks valemite abil, kasutades traadi osa andmeid, selle materjali ja paigaldamismeetodit.

Automaatne 1A, 2A, 3A kasutatakse väikese vooluga ahelate kaitsmiseks. Need sobivad elektrienergia tarnimiseks vähesele arvule seadmetele nagu lambid või lühtrid, väikese võimsusega külmikud ja muud seadmed, mille koguvõimsus ei ületa masina võimekust. Lüliti 3A on tööstuses efektiivselt kasutatav, kui teete kolmnurga kolmefaasilise ühenduse.

Lülitite 6A, 10A, 16A puhul on lubatud kasutada elektrienergiat üksikutele vooluahelatele, väikestele ruumidele või korteritele. Neid mudeleid kasutatakse tööstuses ja nende abil antakse neile elektromehaaniliste jõudude, solenoide, kütteseadmete ja eraldi liiniga ühendatud keevitusseadmete võimsust.

Kolme-, neljapostiline automaat 16A kasutatakse kolmefaasilise võimsuse skeemi sisendina. Tootmises eelistatakse D-kõvera instrumente.

Masinaid 20A, 25A, 32A kasutatakse kaasaegsete korterite juhtmete kaitsmiseks, nad suudavad anda elektrit pesumasinatele, kütteseadmetele, elektriküttele ja muudele suure võimsusega seadmetele. Mudelina 25A kasutatakse sisendautomaadina.

Lülitid 40A, 50A, 63A kuuluvad suure võimsusega seadmete klassi. Neid kasutatakse elektri tootmiseks suure võimsusega seadmetes igapäevaelus, tööstuses, tsiviilehituses.

Kaitselülitite valik ja arvutamine

AB tunnuste tundmine võimaldab määrata, milline masin sobib konkreetseks otstarbeks. Enne optimaalse mudeli valimist tuleb siiski teha mõningaid arvutusi, mille abil saab täpselt määrata soovitud seadme parameetrid.

Samm # 1. Masina võimsuse kindlaksmääramine

Masina valimisel on oluline arvestada ühendatud seadmete koguvõimsusega.

Näiteks vajate masinat köögiseadmete ühendamiseks toiteallikaga. Oletame, et kohvimasin (1000 W), külmik (500 W), ahi (2000 W), mikrolaineahi (2000 W), elektriveekann (1000 W). Koguvõimsus on 1000 + 500 + 2000 + 2000 + 1000 = 6500 (W) või 6,5 kV.

Kui vaatate elektriühenduste võimsuse automaatlauda, ​​pidage meeles, et standardse juhtme pinge elamistingimustes on 220 V, siis sobib ühepositsiooniline või kahepositsiooniline automaatne 32A, mille koguvõimsus on 7 kW.

Tuleb arvestada, et võib osutuda vajalikuks suur energiatarve, sest töö ajal võib olla vajalik ühendada muid elektriseadmeid, mida algselt ei võetud arvesse. Selle olukorra prognoosimiseks kasutatakse kogutarbimise arvutamisel korrutustegurit.

Näiteks lisades täiendavaid elektriseadmeid, oli vaja 1,5 kW võimsust. Siis peate võtma koefitsiendiga 1,5 ja korrutama selle arvutatud võimsusega.

Arvutustes on mõnikord soovitatav kasutada vähendustegurit. Seda kasutatakse juhul, kui mitme seadme samaaegne kasutamine on võimatu. Oletame, et kogu elektrijuhtmestik köögiks oli 3,1 kW. Siis on vähendustegur 1, kuna võetakse arvesse samaaegselt ühendatud seadmete minimaalset arvu.

Kui mõnda seadet ei saa teistega ühendada, siis on vähendusteguriks väiksem kui üks.

Samm # 2. Masina nimivõimsuse arvutamine

Nimivõimsus on võimsus, mille korral juhtmestik ei ole lahti ühendatud. See arvutatakse järgmise valemi abil:

kus M on võimsus (W), N on elektrivõrgu pinge (Volt), CT on vool, mis võib masinast läbi minna (Ampere), on faasi nihke ja pinge nurga väärtust saava nurga kooseinus. Koosinusväärtus on tavaliselt 1, kuna praeguse ja pingefaasi vahel pole praktiliselt mingit nihet.

Valemist väljume ST:

Võimsus, mille oleme juba määranud ja võrgu pinge on tavaliselt 220 volti.

Kui koguvõimsus on 3,1 kW, siis

Saadud vool on 14 A.

Kolmasfaasilise koormuse arvutamiseks kasutatakse sama valemit, kuid võetakse arvesse nurgelpiiri, mis võib ulatuda suurte väärtustega. Tavaliselt ühendatud seadmes on nad loetletud.

3. samm. Rated current calculation

Nimivoolu arvutamiseks võib olla juhtmestiku dokumentatsioon, kuid kui see ei ole, siis määratakse see vastavalt juhtme omadustele. Arvutamiseks on vaja järgmisi andmeid:

  • juhi läbilõikepindala;
  • elamiseks kasutatav materjal (vask või alumiinium);
  • munemise viis.

Elutingimustes asub tavaliselt juhtmestik seina sees.

Vajalike mõõtmiste tegemiseks arvutatakse ristlõikepindala:

Valemil D on juhtme läbimõõt (mm),

S on juhi läbilõikepindala (mm 2).

Järgmiseks kasutage allolevat tabelit.

Võttes arvesse saadud andmeid, valime automaatvoolu töövoolu ja selle nimiväärtuse. See peab olema võrdne või väiksem kui töövool. Mõnel juhul on lubatud kasutada masinaid, mille nominaalvõimsus on suurem kui juhtmestiku tegelik vool.

Samm # 4. Ajavoolu omaduste kindlaksmääramine

BTXi korrektseks tuvastamiseks tuleb arvesse võtta ühendatud koormuste algusvooge. Vajalikud andmed leiate alltoodud tabelist.

Tabeli kohaselt saate seadme sisselülitamise hetkel (amprites) kindlaks määrata aja, mille jooksul praegune piirang taastub.

Näiteks kui võtate 1,5 kW võimsusega elektrilise lihajahutusega, arvutage tabelist selle töövool (see on 6,81 A) ja võttes arvesse käivitusvoolu (kuni 7 korda) mitmekordistavat, saadakse praegune väärtus 6,81 * 7 = 48 (A). Selle jõu voog voolab sagedusega 1-3 sekundit.

Arvestades B klassi VTK graafikuid, näete, et kui ülekoormus on, töötab kaitselüliti esimesel sekundil pärast lihuvõtme käivitamist. On ilmselge, et selle seadme mitmesus vastab klassile C, seega tuleb elektrilise lihumajaga töötamise tagamiseks kasutada masina C-tunnust.

Kodumajapidamisvajaduste jaoks kasutavad tavaliselt lülitid, mis vastavad B, C ja B omadustele. Suurte mitmikvoolude (mootorid, toiteplokid jne) seadmete tööstuses luuakse kuni 10 korda voolutugevus, mistõttu on soovitatav kasutada seadme D-modifikatsioone. Siiski tuleks arvestada selliste seadmete võimsust ja käivitusvoolu kestust.

Standardsed automaatlülitid erinevad tavapärasest, kuna need on paigaldatud eraldi lülitidesse. Seadme funktsioonide hulka kuulub ka ahela kaitsmine ootamatute võimsusjõudude, elektrienergia katkestuste eest terves või kindlas osas võrgust.

Kasulik video teema kohta

Video # 1: AB valimine jooksva iseloomuga ja praeguse arvutuse näide

Video # 2: nimivoolu AB arvutamine

Masinad, mis on kinnitatud maja või korteri sissepääsu juures. Need asuvad tugevates plastkastides. Võttes arvesse kaitselülitite põhiomadusi ja õigeid arvutusi, võite selle seadme jaoks valida õigesti.

Kaitselülitite peamised tehnilised omadused

Praktilises rakenduses on oluline mitte ainult teada voolukatkestite omadused, vaid ka mõista, mida need tähendavad. Selle lähenemisviisi abil saate otsustada enamiku tehniliste probleemide üle. Vaatame, mida mõeldakse etiketil märgitud või muude parameetritega.

Kasutatud lühend.

Märgistusseadmed sisaldavad kogu vajalikku teavet, mis kirjeldab kaitselülitite põhiomadusi (edaspidi AB). Mida nad mõtlevad, selgitatakse allpool.

Ajavoolu tunnus (BTX)

Selle graafilise kuva abil on võimalik saada tingimuste visuaalne kuju, mille alusel aktiveeritakse vooluahela lülitamise mehhanism (vt joonis 2). Graafikul näitab vertikaalkaugus AB-i aktiveerimiseks vajalikku aega. Horisontaalne skaala näitab suhet I / In.

Joon. 2. Kõige tavalisemate automaattiitrite praeguste omaduste graafiline kuva.

Lubatav ülekoormus määrab ajavoolu omaduste tüübi, mis vabastatakse seadmetes, mis toodavad automaatset väljalülitamist. Vastavalt kehtivatele eeskirjadele (GOST P 50345-99) on igale tüübile määratud tähis (ladina tähtedega). Lubatav ülejääk määratakse koefitsiendiga k = I / In iga tüübi kohta standardväärtused (vt joonis 3):

  • "A" - maksimaalne - kolm korda suurem;
  • "B" - 3 kuni 5;
  • "C" - 5-10 korda korrapärasem;
  • "D" - 10-20 korda üleliigne;
  • "K" - 8-14;
  • "Z" - veel 2-4 töötajat.
Joonis 3. Põhiliste aktiveerimisparameetrite erinevad tüübid

Pange tähele, et see diagramm kirjeldab täielikult solenoidi ja termoelemendi aktiveerimise tingimusi (vt joonis 4).

Solenoidi ja termoelemendi töötamise tsoonide graafik

Ülaltoodu põhjal võime kokku võtta, et AB-i peamine kaitsetunnus on tingitud ajavoolu sõltuvusest.

Tüüpiliste ajavooluomaduste loend.

Olles otsustanud märgistamise üle, jätkame kaalumist erinevatele seadmetele, mis vastavad kindlale klassile sõltuvalt omadustest.

Kaitselülitite laua ajavoolu omadused

Tüüp "A" iseloomulik

Selle kategooria termokaitse AB aktiveeritakse, kui vooluahela suhe nominaalseks (I / In) ületab 1,3. Nendes tingimustes toimub sulgemine 60 minuti pärast. Kuna nimivool on veelgi ületatud, vähendatakse reisi aega. Elektromagnetiline kaitse aktiveerub, kui nominaalne väärtus kahekordistub, vastamissagedus on 0,05 sekundit.

See tüüp on loodud ahelates, mis ei kuulu lühiajalise ülekoormuse alla. Näiteks võime võtta pooljuhtseadiste ahelad nende ebaõnnestumise korral, praegune ületamine on ebaoluline. Seda tüüpi ei kasutata igapäevaelus.

Funktsioon "B"

Selle tüübi erinevus eelmisest on operatsiooni voolus, see võib standardist ületada kolm kuni viis korda. Sellisel juhul aktiveeritakse solenoidmehhanism viiekordse koormusega (pinge väljalülitusaeg - 0,015 s), termoelement - kolmekordne (mitte rohkem kui 4-5 sekundit, vajadus välja lülitada).

Selliste seadmete tüübid on leidnud rakenduse võrkudes, mille jaoks suured pingevoolud pole iseloomulikud, näiteks valgustusahelate jaoks.

S201, mille on valmistanud ABB ajavoolu omadustega B

Iseloomulik "C"

See on kõige tavalisem tüüp, selle lubatav ülekoormus on suurem kui kahe eelmise tüübi puhul. Kui nominaalset režiimi ületatakse viis korda, aktiveerub termoelement, see on ahel, mis lülitab toiteallika välja pooleteise sekundi jooksul. Solenoidmehhanism aktiveeritakse, kui ülekoormus ületab normi kümnekordselt.

AB andmed on kavandatud kaitsma elektrilist vooluringi, milles võib esineda mõõdukas käivoolu, mis on tüüpiline leibkonna võrgule, mida iseloomustab segakoormus. Seadme ostmine kodus on soovitatav valida see vorm.

Triplex Legrandi masin

Iseloomulik "D"

Seda tüüpi AB-d iseloomustavad suured ülekoormuse omadused. Nimelt kümnekordne ülemäärane norm thermoelement ja kakskümmend kordne jaoks solenoid.

Kandke selliseid seadmeid suurel algusvooluga ahelatel. Näiteks asünkroonsete elektrimootorite käivitusseadmete kaitsmiseks. Joonisel 9 on näha selle rühma kaks instrumenti (a ja b).

Joonis 9. a) BA51-35; b) BA57-35; c) BA88-35

Iseloomulik "K"

Sellistel AV-del on solenoidi mehhanismi aktiveerimine võimalik, kui praegune koormus ületatakse 8 korda ja see tagatakse juhul, kui on 12-kordne normaalne režiim ülekoormus (kaheksateistkordne konstantse pinge korral). Koorma väljalülitamise aeg ei ületa 0,02 sekundit. Termoelemendi puhul on selle aktiveerimine võimalik tavalisest režiimis üle 1,05.

Rakendusala - induktiivkoormusega ahelad.

Iseloomulik "Z"

Seda tüüpi eristab väike lubatud nimivoolu ületav väärtus, minimaalne piir on standardi kaks korda suurem, maksimaalne on neli korda. Termoelemendi tööparameetrid on samad, mis AB-le iseloomuliku K-ga.

Seda alamliiki kasutatakse elektrooniliste seadmete ühendamiseks.

Iseloomulik "MA"

Selle grupi eripära on see, et koorma lahutamiseks termoelementi ei kasutata. See tähendab, et seade kaitseb ainult lühistest, on elektrimootori ühendamine üsna piisav. Joonis 9 näitab sellist kohanemist (c).

Nominaalne töövool

See parameeter kirjeldab tavapärase töö maksimaalset lubatud väärtust, kui see on ületatud, aktiveeritakse koorma lastav süsteem. Joonisel 1 on näidatud, kus see väärtus kuvatakse (IEK tooted on näide).

Regulaarne töö voolab ringi

Termilised parameetrid

Termin tähistab termoelemendi töötingimusi. Neid andmeid saab saada vastavast ajagraafikust.

Ultimate breaking capacity (PKS).

See tähis tähendab maksimaalset lubatavat koormust, mille korral seade suudab kontuuri avada ilma jõudlust kaotamata. Joonisel 5 on see märgistus tähistatud punase ovaalsega.

Joon. 5. Seadme tootja Schneider Electric

Praegune piirkategooria

Seda terminit kirjeldatakse AB-i võime lahti ühendada enne, kui selle lühisevool jõuab maksimumini. Kohandused on saadaval kolme liigi praeguse piiranguga, olenevalt laadimisaja väljalasetest:

  1. 10 ms ja rohkem;
  2. 6 kuni 10 ms;
  3. 2,5-6 ms.

Seega, mida suurem kategooria, seda väiksem on elektrijuhtmete kuumusega kokkupuude, mistõttu väheneb selle süüte oht. Joonisel 6 on see kategooria ringiga punane.

Tähis BA47-29 tähistab praeguse piirangu klassi

Pidage meeles, et esimese kategooria AB-l ei pruugi olla asjakohast märgistust.

Väike elu, kuidas valida kodus õige lüliti

Pakume mõningaid üldisi soovitusi:

  • Tuginedes kõigile ülalnimetatutele, peaksime valima AB-ga ajahetke "C".
  • Standardsete parameetrite valimisel tuleb kaaluda kavandatud koormust. Arvutamiseks tuleks kasutada Ohmi seadust: I = P / U, kus P on ahela võimsus, U on pinge. Voolutugevuse (I) arvutades valime nominaalse AB vastavalt tabelile, mis on kujutatud joonisel 10. Joonis 10. Diagramm AB valimiseks sõltuvalt koormusvoolust

Kirjutame, kuidas ajakava kasutada. Näiteks, koormusvoolu arvutamisel saime tulemuse 42 A. Teil tuleb valida automaat, kus see väärtus asub rohelises tsoonis (tööpiirkonnas), siis see on 50 A. Valikus peaks arvestama ka seda, milline on praegune tugevus juhtmestiku jaoks.. Selle väärtuse põhjal on lubatud masin valida, tingimusel et koormusvool on väiksem kui juhtmestiku arvutuslik vool.

  • Kui on ette nähtud jäävvooliseade või diferentsiaal voolukatkesti, tuleb tagada maandamine, muidu need seadmed ei pruugi korralikult töötada;
  • Parem on eelistada tuntud kaubamärkide tooteid, need on usaldusväärsemad ja kauem kui Hiina tooted.
  • Circuit Breaker Kategooriad: A, B, C ja D

    Kaitselülitid on seadmed, mis vastutavad elektrivoolu kaitsmise eest suure vooluga kokkupuutest põhjustatud kahjustuste eest. Elektronide liiga tugev vool võib kahjustada kodumasinaid, samuti põhjustada kaabli ülekuumenemist järgneva tagasivoolu ja süttimisega. Kui liin ei ole aja jooksul pingestatud, võib see põhjustada tulekahju. Seepärast on elektripaigaldiseeskirjade (elektripaigaldustingimuste reeglid) nõuete kohaselt keelatud võrgu kasutamine, milles elektrikaitselülitid pole paigaldatud. AB-l on mitu parameetrit, millest üks on automaatse kaitselüliti ajavool. Selles artiklis selgitame A, B, C ja D kategooria kaitselülitite erinevust, mille kaitsmiseks kasutame neid võrke.

    Võrgu kaitseseadmete tunnused

    Ükskõik mis klassi kaitselüliti kuulub, on selle põhiülesanne alati sama - kiiresti tuvastada ülemäärase voolu välimus ja võrgu välja lülitada, enne kui kaabel ja liiniga ühendatud seadmed on kahjustatud.

    Vooluhulgad, mis võivad võrgustikku olla ohtlikud, on jagatud kahte tüüpi:

    • Ülekoormuse voolud Nende välimus esineb enamasti tänu seadmete võrgu lisamisele, mille koguvõimsus ületab selle võimsuse, mille joon suudab taluda. Veel üks ülekoormuse põhjus on ühe või mitme seadme rike.
    • Lühisega põhjustatud ülekoormus. Lüli tekib, kui faas ja neutraaljuhid on omavahel ühendatud. Tavalises olekus on need koormus eraldi ühendatud.

    Vooluahela seade ja tööpõhimõte - videos:

    Ülekoormus

    Nende suurus kõige sagedamini ületab automaatselt nominaalset väärtust, nii et sellise elektrivoolu läbimine mööda ringlussüsteemi, kui see ei kao liiga kaua, ei kahjusta liini. Sellega seoses ei ole antud juhul vajalik hetkeline pingestuse väljalülitamine, seepärast jõuab sageli sageli automaatselt elektrivool. Iga AB on kavandatud teatud elektrivoolu ületamiseks, milles see käivitub.

    Kaitselüliti reageerimisaeg sõltub ülekoormuse suurusest: mõne normaali ületavusega võib kuluda tund või rohkem ja märkimisväärse ühe sekundi jooksul.

    Võimsa koormuse mõjul vooluvuse katkestamiseks vastab soojuspaisumine, mis põhineb bimetallplaadil.

    Seda elementi kuumutatakse võimsa voolu mõjul, see muutub plastiks, paindub ja põhjustab automaatse käivitumise.

    Lühis voolud

    Lühisülekandest põhjustatud elektronide voog ületab oluliselt kaitsevahendi väärtust, nii et viimane kohe käivitub, lülitades voolu välja. Lühise ja viivitamatu reaktsiooni tuvastamiseks vastutab elektromagnetiline vabastamine, mis on südamikuga solenoid. Viimane ülekoormus mõjutab koheselt lülitit, põhjustades selle liikumist. See protsess võtab paar sekundit.

    Siiski on üks nüanss. Mõnikord võib ülekoormuse vool olla väga suur, kuid seda ei põhjusta lühis. Kuidas peaks aparatuur määrama nendevahelise erinevuse?

    Video automaatlülitite valikulisusest:

    Siinkohal jätkame sujuvalt põhiküsimusega, millele meie materjal on pühendatud. Nagu öeldud, on olemas mitmed AB klassid, mis erinevad ajahetkel iseloomuliku iseloomuga. Kõige tavalisemad neist, mida kasutatakse majapidamises elektrivõrkudes, on klasside B, C ja D seadmed. A-kategooria kaitselülitid on palju vähem levinud. Need on kõige tundlikumad ja neid kasutatakse täppisinstrumentide kaitsmiseks.

    Nende seas erinevad praegused hetkeseadised. Selle väärtuse määrab voolu läbilaskevõime korduvus automaadi nimiväärtusele.

    Kaitselülitite väljalülitusomadused

    Selle parameetriga määratud AB-klass on tähistatud ladina tähega ja kinnitatakse seadme kehasse nimivoolule vastava numbri ees.

    Vastavalt EMP kehtestatud klassifikatsioonile on kaitseautomaadid jagatud mitmesse kategooriasse.

    MA tüüpi masinad

    Selliste seadmete eripära on nendes termilise vabanemise puudumine. Selle klassi seadmed on paigaldatud elektrimootorite ja muude võimsate seadmete ühendussõlmesse.

    Ülekoormuskaitse niisugustes liinides pakub ülekoormuslülitust, kaitseb kaitselüliti ainult ülekoormuslülitustest põhjustatud kahjustusi.

    A-klassi seadmed

    Nagu öeldud, on A-tüüpi masinatel kõige suurem tundlikkus. Ajavoolu karakteristikutega seadmete soojuslik vabastamine aeglustab sagedamini jõudlusega AB-d 30% võrra.

    Elektromagnetiline väljalülituspähkel lülitab võrgu välja umbes 0,05 sekundi võrra, kui vooluahela elektrivool ületab nimiväärtust 100% võrra. Kui mingil põhjusel pärast elektrivoolu võimsuse kahekordistamist koefitsiendiga kaks ei saanud elektromagnetiline solenoid töötada, siis vabaneb bimetallieraldus võimsusest 20-30 sekundit.

    Liinide hulka kuuluvad ajaga hoiustamise tunnus A masinad, mille käigus isegi lühiajalised ülekoormused on vastuvõetamatud. Nende hulka kuuluvad ahelad, milles on pooljuhtide elemendid.

    B-klassi ohutusseadmed

    B-kategooria seadmetest on vähem tundlik kui A-tüüpi. Elektromagnetiline vabastus neis käivitub, kui nimivool on 200% kõrgem ja vastamisaeg on 0,015 sekundit. Bimetallplaadi töötamine rikkis koos iseloomuga B-ga sarnase AB-i nominaalväärtusega ületab 4-5 sekundit.

    Selle seadme seadmed on ette nähtud paigaldamiseks liinidele, mis sisaldavad pistikupesasid, valgustusseadmeid ja muid ahelasid, kus elektrivoolu alustades ei ole või on minimaalne väärtus.

    C-kategooria masinad

    Kodu võrkudes on kõige sagedasemad C-tüüpi seadmed. Nende ülekoormus on isegi kõrgem kui eelnevalt kirjeldatud. Selleks, et paigaldada elektromagnetiline väljalülitus solenoid, peab selline seade olema paigaldatud nii, et selle läbivate elektronide voog ületab nimiväärtust 5 korda. Termokaitsesüsteem katkestab 1,5 sekundi jooksul kaitseseadme väärtuse viiekordse ületava väärtuse.

    Nagu juba öeldud, on ajami kaitselülitite paigaldamine aega iseloomulik C tavaliselt leibkonna võrkudes. Nad teevad suurepärast tööd sisendseadmete rolli üleüldise võrgu kaitsmiseks, samas kui B-kategooria seadmed sobivad hästi üksikutele harudele, mille külge on ühendatud väljalaske- ja valgustusseadmed.

    See võimaldab jälgida kaitsemehhanismide selektiivsust (selektiivsus), ja ühe ahela lühise puudumine ei põhjusta kogu maja energiat.

    Circuit Breakers D-kategooria

    Neil seadmetel on suurim ülekoormus. Selles seadmes paigaldatud elektromagnetilise mähise käitamiseks on vaja kaitsta kaitselüliti elektrivoolu ületada vähemalt 10 korda.

    Sellisel juhul vabaneb termiline vabastamine 0,4 sek.

    D-tunnusega seadmeid kasutatakse sageli üldistes hoonete ja rajatiste võrgustikes, kus neil on turvavõrgu roll. Need käivituvad, kui lülituslülitid ei ole eraldi ruumis õigeaegselt katkestatud. Samuti on need paigaldatud vooluringidesse, kus on palju lähtevooge, mille külge näiteks elektrimootorid on ühendatud.

    Kategooria K ja Z ohutusseadmed

    Selliste tüüpide automaadid on palju vähem levinud kui eespool kirjeldatud. K-tüüpi seadmetel on elektromagnetilise väljalülitamise jaoks vajalike praeguste väärtuste suur erinevus. Vahelduvvooluahela korral peab see indikaator ületama nominaalsüsteemi 12 korda ja konstantseks - 18 võrra. Elektromagnetilise solenoidi töö ei toimu rohkem kui 0,02 sekundit. Sellises seadmes võib termilise vabanemise toimida siis, kui nimivool ületab ainult 5%.

    Need funktsioonid on tingitud K-tüüpi seadmete kasutamisest äärmiselt induktiivsete koormustega ahelates.

    Z-tüüpi seadmetel on ka elektromagnetilise väljalülitamise solenoidi erinevad väljalülitusvoolud, kuid levimine ei ole sama suur kui AV-kategooria K. Vooluahela vooluringil tuleb nende lahtiühendamiseks pidurdada kolmekordselt ja DC-võrkudes peab elektrivool olema 4,5 korda nominaalset.

    Z-iseloomulikke seadmeid kasutatakse ainult liinidel, kuhu on ühendatud elektroonilised seadmed.

    Ilmselgelt video kategooriate masinate kohta:

    Järeldus

    Käesolevas artiklis analüüsisime kaitseautomaatide ajapõhiseid omadusi, nende seadmete liigitamist vastavalt EMP-le, samuti arutasime, millised ahelad on paigaldatud eri kategooriate seadmetesse. Saadud teave aitab teil määrata, milliseid kaitseseadmeid tuleks võrgul kasutada, lähtudes sellest, millistesse seadmetesse see on ühendatud.